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S1. Comparing implicit shape representations

In this section, we compare two implicit shape represen-
tations: Unsigned Distance Fields (UDFs) [2] and General-
ized Winding Numbers (GWNs) [3]. The visual comparison
is shown in Figure S2.

To perform this comparison, we first convert a 3D shape
to each implicit shape representation, calculated on the
points of the 256 × 256 × 256 spatial grid. (Please note
that during training, we evaluate the prediction results at
the points of the 128 × 128 × 128 spatial grid.) We then
convert a shape in each implicit representation back to a 3D
mesh. In particular, for UDFs, we obtain a 3D mesh using
a marching cubes algorithm with a threshold value set to
0.005. For GWNs, we obtain a 3D mesh by first computing
GWNs gradients followed by a marching cubes algorithm
with a threshold set to 0.3 [1]. The threshold values are
selected empirically. For UDFs, too large threshold values
result in thick double surfaces, while too small threshold
values result in appearance or visible holes in the recon-
structed 3D geometry. For GWNs, too large threshold val-
ues result in appearance or visible holes in the reconstructed
3D geometry, and too small threshold values result in thick
double surfaces.

From Figure S2, we observe that the reconstructed 3D
shapes from UDFs often contain closed surfaces in open
regions, such as the ‘collar’ region or ‘sleeves’ openings.
While the reconstructed 3D shapes from GWNs miss some
fine-details (e.g., less detailed reconstruction of the ‘belt’
region in Figure S2), they exhibit open surfaces like the
‘collar’ region. This was previously observed by Chi et
al. [1].

S2. PyTorch-like pseudo-code for Binarisation
and Feature Blending

We will release our code upon acceptance. In addition, Al-
gorithm 1 presents a PyTorch code for binarisation of blend-
ing weights αi ∈ R512, implementing (1) Equation (1) with
λ = 1, and (2) the feature blending step in Equation (3), that
combines our binary activation αi

∗ and the latest sketch fea-
ture f i

align with the merged feature obtained in the previous
step f̃ i−1

align.

S3. Qualitative comparison of iterative behav-
ior

Table 4, in the main document, shows that our feature fu-
sion strategy is by far the most efficient in updating the 3D
geometry with respect to the most recent sketch view.

In Figure S4, we provide qualitative comparison with
alternative feature fusion strategies, described in the main
document: B-RNN, B-Concat, and B-Cont-α.

S4. Additional result on different datasets
We present qualitative results in Fig. S3 on Wang et al. [5]
in the following figure. Although we evaluate on [5], a com-
parison of their proposed method with ours is unfair since:
(a) [5] only works for a predefined garment category and
lacks generalization (b) [5] does not utilize any feature ag-
gregation strategy to handle multiple views (c) the dataset
in [5] does not include part-information (i.e., annotation for
“sleeves” etc.) to support the augmentation strategy used in
our training to support our goal of iterative design evolution.

S5. Inference time or latency
Generating the underlying garment geometry from

sketches includes two stages of latency: (a) Predicting the
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Figure S1. Alternate UI of our proposed system to support iterative multi-view garment design. In this example, the user starts by sketching
in an arbitrary chosen view, then rotates the reconstructed garment to a back view and changes the design by augmenting it with a skirt.
Exploring the design further, yet from different viewpoints, the user adds first one sleeve and then another. Our system efficiently updates
the prediction, carefully matching it to the most recent view.

implicit representation of geometry via our model. This
step takes 1.24s. (b) Following the standard procedure of
extracting a mesh from a predicted implicit representation
using Marching Cubes [4]. This takes 0.97s. Therefore, the
total latency is 2.21s.

For real-time performance this latency can be further re-
duced by paralleling the computation into multiple GPUs.
Exploring alternative garment representation may also help
in the long term.

Algorithm 1: PyTorch code to compute strictly bi-
nary signal in Eq.2 and Feature Blending in Eq.3
import torch
import torch.nn.functional as F

# Compute strictly binary signal
def binarise(x):

# x: Continuous α shape [nbatch, m]
x = F.hardshrink(x, lambda=1.0)
x = F.hardtanh(x, min val=0, max val=1)
return x

# Compute Feature Blending
def blending(aligned, alpha):

# aligned: List of [f0
align, f

1
align, . . . , f

N
align]

# alpha: List of [α0, α1, . . . , αN ]

N = len(aligned) # Length of List f i
align

combined = aligned[0]

# Iterate 1 to N-1; uses 0-th indexing
for idx in range(1, N):

f = aligned[idx] # select f i
align

a = alpha[idx] # select αi

b = binarise(a) # Binarise to 0 or 1

# Feature Blending Step
combined = b*f + (1 - b)*combined

return combined
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Figure S2. Qualitative comparison of the two implicit representations: Unsigned Distance Fields (UDFs) [2] and Generalized Winding
Numbers (GWNs) [3]. For each rectangle: In the first row, we show the ground-truth geometry. In the second row, we show the recon-
structed 3D shape from UDFs. In the third row, we show the reconstructed 3D shape from GWNs. See Section S1 for the details.

Figure S3. Qualitative results of our proposed method on Wang et
al. [5]. We omit our data augmentation strategy described in Sec-
tion 4 since [5] does not include part-information (i.e., annotation
for “sleeves” etc.). This limits our goal of iterative design.



Figure S4. View-disentanglement for iterative design editing (see
Section 4.2.3 in the main document) on 2 representative garments.
We compare our method to B-RNN, B-Concat, and B-Cont-α
baselines, described in the main document. It can be observed that
(1) B-RNN, B-Concat and B-Cont-α ‘forget’ the details sketched
in the earlier views, and not visible in the most recent views; (2)
In addition, B-Cont-α can not accurately take into account edits
to a garment design; (3) Our method not only updates 3D geom-
etry with respect to the most recent sketch views (e.g. removing
a sleeve), but also retains information from earlier sketches (the
‘collar’ region does not change when editing a ‘sleeve’ in the com-
plementary views).


