
Handwritten Digit String Recognition
for Indian Scripts

Hongjian Zhan1(B), Pinaki Nath Chowdhury2, Umapada Pal2, and Yue Lu1

1 Shanghai Key Laboratory of Multidimensional Information Processing,
Department of Computer Science and Technology, East China Normal University,

Shanghai 200241, China
ecnuhjzhan@gmail.com

2 CVPR Unit, Indian Statistical Institute, Kolkata, India

Abstract. In many documents digits/numerals may touch each other
and hence digit string recognition is necessary as segmentation of indi-
vidual numeral from the touching string is difficult. In this paper, we
propose a digit string recognition system for four Indian popular scripts.
Here we consider strings of Kannada, Oriya, Tamil and Telugu scripts for
our experiment. This paper has two contributions: (i) we have developed
4 datasets of digit string for each of these four scripts. Each dataset has
20000 numeral string samples for training and 30000 samples for testing.
As there is no such dataset available, it will be helpful to the community
(ii) we apply a RNN free CNN (Convolutional Neural Network) and CTC
(Connectionist Temporal Classifica-tion) based architecture for numeral
string recognition. Unlike normal text string, in string of digits has no
contextual information among the digits and hence a digit may be fol-
lowed by an arbitrary digit in a digit string. Because of such behaviors
we apply a CNN and CTC based architecture without RNN for numeral
string recognition. We tested our scheme on our different test datasets
and results are provided.

Keywords: String recognition · Convolutional Neural Network ·
Connectionist Temporal Classification · Postal Automation

1 Introduction

Because of various applications, recognition of handwritten numeral string has
been a popular area for many years to the researchers. Some of its potential
application areas are Postal Automation, Bank cheque processing, etc. Although
India is a multi-lingual and multi-script country (in India there are about 25
official languages and 11 different scripts are used to write these languages) but
not much work is done towards the string recognition of Indian handwritten
numerals [2,18,19].

There are two approaches for handwriting numeral string recognition. One
is segmentation based and other is segmentation-free [1]. In many Indian docu-
ments, digits may touch in different manners like top touching, middle-touching
c© Springer Nature Switzerland AG 2020
S. Palaiahnakote et al. (Eds.): ACPR 2019, LNCS 12047, pp. 262–273, 2020.
https://doi.org/10.1007/978-3-030-41299-9_21



Handwritten Digit String Recognition for Indian Scripts 263

and bottom touching. Such touching may be categorized as single point touch-
ing, multiple point touching, ligature point touching etc. Moreover, two, three,
four and five digit touching strings are also available in Indian documents and
hence it is very difficult for accurate segmentation of individual digits from such
touching string.

Although there are many pieces of work on Indian isolated digit recognition,
there is not much work on Indian digit string recognition. Related pieces of
Indian isolated digit recognition work can be seen in [2–9]. As this work is on
string recognition, we briefly described here the existing work on digit string
recognition.

To recognize Indian pin code written in Pal et al. [18] proposed a segmen-
tation free segmentation approach. Here, at first, binarization of the input doc-
ument is done. Next, water reservoir concept is applied to pre-segment a pin
code string into possible primitive components (individual digits or its parts).
Pre-segmented components [10] of the pin code are then merged into possible
digits to get the best pin code using dynamic programming (DP) and modified
quadrat-ic discriminant function (MQDF) [11] classifier. In 2009, Pal et al. [19]
also pro-posed a technique for Bangla, Hindi and English digit-string recognition
system.

Although there are several pieces of work on isolated numeral recognition for
Kannada, Oriya, Tamil and Telugu scripts [2], to the best of our knowledge there
is no work on numeral string recognition for any of these four scripts. Hence in
this paper we have considered digit string recognition of these four scripts for
our experiments. Also no datasets are available for digit string for these four
scripts and hence we have proposed several datasets for this work.

Unlike normal text string, in string of digits there is no contextual informa-
tion among the digits as a digit may be followed by an arbitrary digit in a string
of digits. Because of this, in this paper, we propose a new architecture which is
based on CNN (Convolutional Neural Network) and CTC (Connectionist Tem-
poral Classification) [13], without using RNN for numeral string recognition.
Also to connect CNN with CTC, we transform the outputs of CNN to a two-
dimension vector to meet the feeding requirement of CTC. Furthermore, we
utilize dense blocks to build CNN part to extract efficient image features.

Rest of the paper is organized as follows. In Sect. 2 we discuss about the
properties of Indian scripts considered here. Section 3 deals with dataset details.
Proposed methodology is presented in Sect. 4. The experimental results are dis-
cussed in Sect. 5. Finally, conclusion is given in Sect. 6.

2 Properties Indian Scripts

Most of the Indian scripts are originated from Brahmi script through various
transformations. Writing style of the Indian scripts considered in this paper is
from left to right, and concept of upper/lower case is absent in these scripts.

Oriya is a popular language and script of India. This language is used mainly
in the Odisha (formerly Orissa) state of India and also in West Bengal, Jhark-
hand, and Gujarat. Oriya is the official language of Odisha state.



264 H. Zhan et al.

Kannada is another popular script and it is the official language of the south-
ern Indian state, Karnataka. Kannada is a Dravidian language mainly used by
the people of Karnataka, Andhra Pradesh, Tamil Nadu and Maharashtra.

Telugu is the 3rd most popular scripts in India. It is the official language of
the southern Indian state, Andhra Pradesh. Telugu is also spoken in Bahrain,
Fiji, Malaysia, Mauritius, Singapore and the UAE. The Telugu script is closely
related to the Kannada script.

Tamil is also a popular south Indian Language and one of the oldest languages
in the world. It is the official language of the southern Indian state, Tamil Nadu.
Apart from India, it is also one of the official languages in the countries like
Singapore, Malaysia and Sri Lanka.

To get an idea about digit shapes of the four scripts considered in this paper,
a set of handwritten samples of these scripts is shown in Fig. 1.

Fig. 1. Handwritten numeral samples of four scripts.

The challenging part of Indian script handwritten recognition is the distinc-
tion between the similar shaped components. Sometimes a very small part is
the distinguishing mark between two numerals. These small distinguishing parts
increase the recognition complexity and decrease recognition accuracy. Because
of the writing styles of different individuals, same numerals may take different
shapes and conversely two or more different numerals of a script may take similar
shape. These factors also increase the complexity of recognition method. To get
the idea of similar shape numerals, we provide some examples in Fig. 2. Here in
the first row both the numerals of the first pair of Telugu script look like zero.
But the first numeral of this pair is Telugu ‘one’ and 2nd numeral is Telugu
‘zero’. Similarly, in the second pair, it seems both the digits are similar. But first
digit is ‘6’ and second digit is ‘9’.



Handwritten Digit String Recognition for Indian Scripts 265

Fig. 2. Examples of some similar shaped numerals.

3 Data Collection

Deep Learning models requires large amount of data for training. Moreover,
in many of the Indian scripts no large numeral database is available for deep
learning purpose. As there are 11 different scripts are available for India, it is
difficult to develop large datasets for each of these 11 scripts. Although some large
handwritten numeral string datasets are available for Bangla and Hindi, no large
handwritten numeral/digit string dataset is available for Kannada, Oriya, Tamil
and Telugu. Hence, here we have developed 4 datasets of handwritten digit string
for each of these four scripts. Each dataset has 20000 handwritten digit string
samples for training and 30000 samples for testing. The dataset contains numeral
string samples of length 6 digits to 10 digits uniformly distributed throughout
the training and testing set.

To make the dataset of various complexities, we generate 4 datasets for each
script and they are named as Dataset-1, Dataset-2, Dataset-3, and Dataset-
4. The first dataset, i.e. “Dataset-1” has only non-touching or non-overlapping
numeral whereas Dataset-2 consists of numeral string which may or may not be
touching/overlapping. Both real digit string and synthetic digit string are there
in these two datasets. By synthetic digit string we mean the digit strings that
are generated through computer program from real isolated handwritten digits.

Other two datasets (i.e. “Dataset-3” and “Dataset-4”) are completely syn-
thetic and all the digits in a string are touching/overlapping. These datasets are
generated through computer program from real isolated handwritten digits and
the touching/overlapping area is different in these two datasets. “Dataset-3” has
overlapping digit string where there is a maximum overlap of 1 stroke width
and “Dataset-4” consists of digit strings having a maximum overlap of 2 stroke
width. Here stroke width of the digit which is going to be included in the string
during digit string formation is considered for touching. Examples of each of the
datasets of each script are shown in Fig. 3(a–d).

During synthetic digit string generation, each digit strings were randomly
generated ensuring that the individual digits in a particular sample have similar
size and stroke width.

As mentioned earlier, we have four datasets in each scripts and hence there
are total 16 datasets. As mentioned above, each dataset has 20000 handwritten
digit string samples for training and 30000 samples for testing. That means we
have a total of 50,000 samples, including training and testing set, for each dataset
of a script. Thus, for 16 datasets we have a total of 800,000-digit string samples.



266 H. Zhan et al.

Now these datasets are available freely to the researchers. As there so such
big datasets, we hope this dataset will be helpful to the researchers and the
generated dataset can be used as a test bed for performance evaluation of on
digit string recognition.

4 Methodology

We propose a new network for handwritten digit string recognition, which is
shown in Fig. 4. In order to enhance the performance of DenseNet [12], we add
residual connections between dense blocks, For the output layer, we apply a CTC
[13] to calculate loss at the training phase and give the predictions at the testing
phase.

4.1 Dense Block

A dense block is a stack of densely connected convolutional layers [12]. It can
extract more efficient features than plain and residual convolutional networks.
It consists of a group of layers, the batch normalization layer [15], ReLU layer
[16] and a convolutional layer. The kernel size of the convolutional layer is 3*3,
which can maintain the size of feature map in the whole dense block. After the
convolutional layer, we apply a dropout layer [17] with rate 0.2.

4.2 Transition Block

The feature maps pass through a dense block will keep the size the same. But
it is important to reduce the feature map size in a convolutional network, so we
apply a transition block between two dense blocks to decrease the size. A typical
transition block consists of a batch normalization layer, a 1*1 convolutional layer
and an average pooling layer with kernel 2*2. The dropout layer has dropout
rate to 0.2.

4.3 Residual Connections

There are two main differences between DenseNet [12] and ResNet [14]. In
DenseNet, the connections between convolutional layers are densely and the
way to combine feature maps is concatenation. We enhance these advantages
in this paper. In transition block there is an average pooling layer to reduce
the feature map size, in order to retain more information, we add max pooling
residual connections, as shown in Fig. 4. And we follow the way in DenseNet, we
concatenate the two branches features to feed into next layer.



Handwritten Digit String Recognition for Indian Scripts 267

(a) Dataset-1

(b) Dataset-2

(c) Dataset-3

(d) Dataset-4

Fig. 3. Samples of different datasets.

4.4 Dimension Adjustment

The output of convolutional layer always has three dimensions. However, the
CTC we apply in our network requires the input data with two dimensions. The
output of dense block is always a 3-D tensor, i.e., the number, height and width
of feature maps (4-D if we consider the batch− size dimension). First we flatten
the 3-D feature tensor to 2-D by expanding on the number dimension, then we
apply a column-wise fully connected layer to reduce the height dimension to the
assigned value. With these actions, we can generate the suitable input for the
following CTC output layer.



268 H. Zhan et al.

Fig. 4. The structure of the proposed network.

4.5 CTC Output Layer

Connectionist temporal classification [13] is a kind of output layer with two main
functions, calculating the loss at training phase and generating the prediction
results at testing phase.

For a string recognition task, the labels are drawn from a set A (in this
paper, A is the ten digits). With an extra label named blank, we get a new
set A

′
= A

⋃
blank, which is used in reality. The input of CTC is a sequence

y = y1, ..., yT , where T is the sequence length. The corresponding label denotes
as I over A. Each yi is a probability distribution on the set A

′
. We define a many-

to-one function F : AT => A<=T to resume the repeated labels and blanks. For
example F (11− 6− 49− 999− 44−−−−−) = 164994. (− indicates the ‘blank’
label).

Let S = (X, I) is the training set, where X is the training image and I is the
ground truth. So the CTC loss is calculated as:

O(S) = −
∑

(x,I)∈S

log p(I|y) (1)

where p(I/y) is the conditional probability defined as the sum of probabilities of
all predictions that are mapped by F onto I, I is the prediction result. Therefore,
the network can be end-to-end trained on pairs of images and sequences, without
the procedure of manually labeling individual components in training images.

5 Result and Discussions

Before going to present the results, we provide here parameters and system infor-
mation. We apply ADADELTA to update the parameters. In all experiments, we
train the network with 50 epochs. The hyper-parameters of three dense blocks
are the same with the growth rate to 8 and the number of convolution layer to 8.
Our experiments are performed on a Super-micro server with the GPU NVIDIA
TITAN X. The software is the Caffe [20] framework with cuDNN V5 accelerated.



Handwritten Digit String Recognition for Indian Scripts 269

5.1 Global Recognition Results

Overall accuracies on 16 datasets (four datasets for each of the four scripts)
obtained from the experiments for Kannada, Oriya, Tamil and Telugu scripts
are shown in Table 1. Here both digit level as well as string level accuracies
are presented here. From the table it can be seen that maximum accuracy for
digit level is obtained from Telugu (98.90%) and it is for dataset 1. Minimum
accuracy for digit level is obtained from Kannada (96.42%) and it is for dataset
4. Similarly, that maximum accuracy for string level is obtained from Tamil
(91.78%) and it is for dataset 1. Minimum accuracy for string level is obtained
from Kannada (75.94%) and it is for dataset 4. It can be seen that dataset 4
has relatively lower accuracy than other datasets and this is because dataset 4
is the most complex dataset having many types of touching.

Table 1. Digit level and string level accuracies of four scripts on different datasets.

Datasets & mode Scripts

Kannada Oriya Tamil Telugu

Dataset-1 Digit level Accuracy 97.43 98.00 98.87 98.90

String level Accuracy 82.70 85.08 91.78 91.39

Dataset-2 Digit level Accuracy 97.57 97.20 98.69 98.39

String level Accuracy 83.52 80.60 90.52 88.17

Dataset-3 Digit level Accuracy 97.26 96.97 98.33 98.55

String level Accuracy 81.51 78.50 88.30 89.01

Dataset-4 Digit level Accuracy 96.42 96.64 98.34 98.21

String level Accuracy 75.94 76.84 88.59 86.52

5.2 Confusing Numeral Pair Computation

We also noted the main confusing numeral pair of different scripts considered
here and we observed that main reason of such confusion is shape similarity.
Four confusing matrices for the four scripts on dataset-1 are presented in the
Tables 2, 3, 4 and 5 for Kannada, Oriya, Tamil and Telugu scripts, respectively.

In Kannada main confusing numeral pair is numeral six and numeral seven.
They confuse about 2.37% cases. Next pair of confusion in Kannada is numeral
three and numeral seven with confusion rate 2.35%. For Oriya, maximum confu-
sion is between is numerals two and seven they confuse about 3.04% cases. It can
be seen that from Table 4, for Tamil, maximum confusion is between numerals
four and six and they confuse about 1.19% cases. Similarly, it can be seen that
from Table 5 for Telugu that numeral nine and six have maximum confusion it
is 1.74%.



270 H. Zhan et al.

Table 2. Confusion matrix for Kannada.

Digit Recognized as

0 1 2 3 4 5 6 7 8 9

0 98.31 1.01 0.22 0.15 0.01 0.17 0.0 0.0 0.12 0.01

1 0.01 99.89 0.02 0.05 0.0 0.02 0.0 0.0 0.0 0.0

2 0.01 0.0 99.46 0.19 0.01 0.14 0.0 0.01 0.03 0.14

3 0.0 0.05 0.01 99.35 0.01 0.44 0.0 0.03 0.0 0.1

4 0.0 0.02 0.0 0.2 98.42 1.09 0.07 0.03 0.07 0.09

5 0.0 0.04 0.49 1.19 0.21 97.96 0.0 0.01 0.06 0.05

6 0.01 0.0 0.04 0.26 0.43 0.07 94.59 2.37 2.02 0.19

7 0.03 0.03 0.41 2.35 0.07 0.06 0.27 95.97 0.76 0.06

8 0.23 0.04 0.11 0.12 0.01 0.15 0.02 0.0 98.91 0.42

9 0.0 0.1 0.0 0.02 0.02 0.0 0.42 0.01 0.17 99.26

Table 3. Confusion matrix for Oriya.

Digit Recognized as

0 1 2 3 4 5 6 7 8 9

0 99.15 0.02 0.02 0.08 0.02 0.0 0.29 0.03 0.05 0.35

1 0.06 99.2 0.0 0.03 0.0 0.28 0.0 0.11 0.31 0.0

2 0.07 0.04 96.15 0.2 0.06 0.0 0.37 3.04 0.0 0.06

3 0.01 0.0 0.0 98.73 0.0 0.0 0.27 0.93 0.03 0.01

4 0.17 0.0 0.0 0.12 99.45 0.09 0.0 0.1 0.04 0.02

5 0.0 0.3 0.0 0.57 0.4 98.51 0.0 0.02 0.0 0.2

6 0.29 0.29 0.35 0.2 0.02 0.0 97.15 1.66 0.01 0.03

7 0.0 0.0 1.22 0.5 0.02 0.0 0.09 98.07 0.0 0.08

8 0.0 0.01 0.0 0.13 0.0 0.0 0.0 0.0 99.85 0.0

9 0.14 0.04 0.01 0.55 0.05 0.14 0.08 0.02 0.16 98.81

5.3 Erroneous Results

To get the idea about the digit-string samples where our system provides erro-
neous results we provide some examples in Fig. 5. Here four samples are given,
In the first samples the actual string 1000018082 is recognized as 100018082.
The first two samples show the mistake about losing one digit. In the second
samples the actual string 10014801 is recognized as 1001480. In the third and
fourth samples, there are some wrong predictions and this is mainly because of
their shape similarity.



Handwritten Digit String Recognition for Indian Scripts 271

Table 4. Confusion matrix for Tamil.

Digit Recognized as

0 1 2 3 4 5 6 7 8 9

0 99.55 0.03 0.0 0.0 0.01 0.0 0.0 0.37 0.0 0.03

1 0.0 99.73 0.01 0.0 0.01 0.0 0.14 0.0 0.0 0.1

2 0.04 0.02 98.66 0.31 0.0 0.08 0.02 0.01 0.86 0.0

3 0.0 0.06 0.03 99.77 0.0 0.11 0.0 0.04 0.0 0.0

4 0.0 0.53 0.0 0.0 98.02 0.0 1.19 0.03 0.23 0.0

5 0.0 0.01 0.0 0.0 0.0 99.94 0.03 0.0 0.0 0.0

6 0.0 0.0 0.0 0.0 0.02 0.01 99.74 0.05 0.0 0.18

7 0.0 0.0 0.0 0.01 0.0 0.01 0.18 99.73 0.05 0.0

8 0.01 0.0 0.0 0.0 0.01 0.0 0.11 0.0 99.88 0.0

9 0.1 0.02 0.01 0.21 0.02 0.34 0.7 0.02 0.0 98.59

Table 5. Confusion matrix for Telugu.

Digit Recognized as

0 1 2 3 4 5 6 7 8 9

0 99.19 0.77 0.01 0.0 0.02 0.01 0.0 0.01 0.0 0.0

1 0.08 99.84 0.0 0.02 0.0 0.0 0.0 0.05 0.0 0.0

2 0.07 0.0 99.68 0.12 0.11 0.0 0.01 0.0 0.0 0.0

3 0.02 0.03 0.01 99.83 0.07 0.0 0.0 0.03 0.0 0.0

4 0.0 0.0 0.0 0.0 99.77 0.22 0.0 0.0 0.0 0.0

5 0.01 0.03 0.01 0.02 0.54 99.39 0.01 0.01 0.0 0.0

6 0.06 0.0 0.0 0.01 0.03 0.01 98.65 0.34 0.0 0.89

7 0.0 0.0 0.01 0.01 0.02 0.0 0.0 99.94 0.0 0.0

8 0.09 0.0 0.0 0.02 0.2 0.0 0.0 0.0 99.67 0.0

9 0.01 0.01 0.0 0.01 0.08 0.0 1.74 0.01 0.22 97.91

Fig. 5. Examples of some similar shaped numerals.



272 H. Zhan et al.

6 Conclusion

In this paper we apply a CNN-CTC architecture for four handwritten Indian
script numeral string recognition. We also develop datasets of digit string for
these four scripts. Each dataset has 20000 numeral string samples for training
and 30000 samples for testing. As there is no such dataset available, it will be
helpful to the community. Moreover, to the best of our knowledge there is no
work on digit-string recognition of these four scripts, and hence this is the first
work on work on these scripts.

References

1. Plamondon, R., Srihari, S.N.: On-line and off-line handwritten recognition: a com-
prehensive survey. IEEE Trans. PAMI 22, 62–84 (2000)

2. Pal, U., Chaudhuri, B.: Indian script character recognition: a survey. Pattern
Recogn. 37, 1887–1899 (2004)

3. Bhowmick, T., et al.: An HMM based recognition scheme for handwritten Oriya
numerals. In: Proceedings of the 9th International conference on Information Tech-
nology, pp. 105–110 (2006)

4. Sharma, N., Pal, U., Kimura, F.: Recognition of handwritten Kannada numerals.
In: Proceedings of the 9th International Conference on Information Technology,
pp. 133–136 (2006)

5. Hanmandlu, M., Ramana Murthy, O.: Fuzzy model based recognition of handwrit-
ten numerals. Pattern Recogn. 40, 1840–1854 (2007)

6. Wen, Y., Lu, Y., Shi, P.: Handwritten Bangla numeral recognition system and its
appli-cation to postal automation. Pattern Recogn. 40, 99–107 (2007)

7. Bajaj, R., Dey, L., Chaudhury, S.: Devnagari numeral recognition by combining
deci-sion of multiple connectionist classifiers. Sadhana 27, 59–72 (2002)

8. Kumar, S., Singh, C.: A study of Zernike moments and its use in Devnagari
handwrit-ten character recognition. In: Proceedings of the International confer-
ence on Cognition and Recognition, pp. 514–520 (2005)

9. Bhattacharya, U., et al.: Neural combination of ANN and HMM for handwritten
Devnagari numeral recognition. In: Proceedings of the 10th International Workshop
on Frontiers of Handwriting Recognition, pp. 613–618 (2006)

10. Otsu, N.: A Threshold selection method from grey level histogram. IEEE Trans.
SMC 9, 62–66 (1979)

11. Kimura, F., et al.: Modified quadratic discriminant function and the application
to Chinese character recognition. IEEE Trans. PAMI 9, 149–153 (1987)

12. Huang, G., Liu, Z., Weinberger, K., Maaten, L.: Densely connected convolutional
networks (2016). arXiv preprint arXiv:1608.06993

13. Graves, A., Fernndez, S., Gomez, F., Schmidhuber, J.: Connectionist temporal
classification: labelling unsegmented sequence data with recurrent neural networks.
In: Proceedings of the 23rd International Conference on Machine learning, pp. 369–
376 (2006)

14. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition.
In: Proceedings of the 29th IEEE Conference on Computer Vision and Pattern
Recognition, pp. 770–778 (2016)



Handwritten Digit String Recognition for Indian Scripts 273

15. Ioffe, S., Szegedy, C.: Batch normalization: accelerating deep network training by
reducing internal covariate shift. In: Proceedings of International Conference on
Machine Learning, pp. 448–456 (2015)

16. Glorot, X., Bordes, A., Bengio, Y.: Deep sparse rectifier neural networks, In: Pro-
ceedings of the 14th International Conference on Artificial Intelligence and Statis-
tics, pp. 315–323 (2011)

17. Hinton, G., et al.: Improving neural networks by preventing co-adaptation of fea-
ture detectors (2012). arXiv preprint arXiv:1207.0580

18. Pal, U., Roy, K., Kimura, F.: Bangla handwritten pin code string recognition for
indian postal automation. In: Proceedings of International Conference on Frontiers
in Handwriting Recognition, pp. 290–295 (2008)

19. Pal, U., Roy, K., Kimura, F., Indian multi-script full pincode string recognition
for postal automation, In: Proceedings of the 10th International Conference on
Document Analysis and Recognition (ICDAR), pp. 456–460 (2009)

20. Jia, Y., et al.: Caffe: convolutional architecture for fast fea-ture embedding (2014).
arXiv preprint arXiv:1408.5093


