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Abstract
Zero-shot sketch-based image retrieval typically asks for

a trained model to be applied as is to unseen categories. In
this paper, we question to argue that this setup by defini-
tion is not compatible with the inherent abstract and sub-
jective nature of sketches – the model might transfer well to
new categories, but will not understand sketches existing in
different test-time distribution as a result. We thus extend
ZS-SBIR asking it to transfer to both categories and sketch
distributions. Our key contribution is a test-time training
paradigm that can adapt using just one sketch. Since there
is no paired photo, we make use of a sketch raster-vector
reconstruction module as a self-supervised auxiliary task.
To maintain the fidelity of the trained cross-modal joint em-
bedding during test-time update, we design a novel meta-
learning based training paradigm to learn a separation be-
tween model updates incurred by this auxiliary task from
those off the primary objective of discriminative learning.
Extensive experiments show our model to outperform state-
of-the-arts, thanks to the proposed test-time adaption that
not only transfers to new categories but also accommodates
to new sketching styles.

1. Introduction
Sketch-based image retrieval (SBIR) is by now a well-

established topic in the vision community [14, 16]. Re-
search efforts have mainly focused on addressing the
sketch-photo domain gap, incurred by abstraction [33],
drawing style [47] and stroke saliency [19]. Despite great
strides made, the field remains plagued by the data scarcity
problem – sketches are notoriously difficult to collect [4,6].

Zero-shot SBIR (ZS-SBIR) in particular represents the
main body of work behind this push for addressing data
scarcity. It specifically examines the scarcity issue from
a category transfer perspective, and strives for utilising
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Figure 1. Normal ZS-SBIR methods obtain lower accuracies as
they retrieve from unseen data using model weights trained on seen
data. During inference, our model (Sketch3T) adapts to the test
distribution via an auxiliary task, before retrieval, scoring better.

sketch-photo pairs from seen categories to train a model that
could be directly applied on those unseen (see Fig. 1(a)).

In this paper, we question this otherwise commonly ac-
cepted setup at definition level. We importantly argue that
the very assumption of being able to apply a trained model
as is to unseen categories, is by definition incompatible with
the inherent subjective nature of sketch data. This largely
results in a model that might well understand the seman-
tic category shift, but not acute to changes in sketching
style and abstraction level (both being prevalent problems in
sketch [47]). Alleviating this problem is particularly crucial
for the practical adaption of SBIR, as otherwise retrieval
performance will incur a significant drop – a system that
understands “my” sketches, might not understand “yours”.

This paper thus extends the conventional definition of
ZS-SBIR to embrace this new problem, i.e., a new ZS-SBIR
framework that (i) not only transfers knowledge on to un-
known categories, (ii) but also adapts to the unique style of
new sketches. We implement this by adopting a test-time-
training framework that adapts to new categories and new



styles at inference time. That is, instead of anticipating the
distribution shifts via normal training, we intend to learn
them at test time. The beauty of our solution lies in that
we achieve a higher accuracy without any additional train-
ing sketch-photo pairs, but with just a single query sketch,
no more than what is required in a typical ZS-SBIR setup
(Fig. 1). It follows that this single sketch will first adjust
the model to unseen style and category, and then use again
as query to retrieve using the updated model, all test time.

Implementing this test-time-training framework despite
intuitive is not trivial. There are two major challenges:
Firstly, we have access to only the query sketches during
inference, without any label or paired photo for supervision.
Secondly, this test-time update should not degrade the joint
embedding (that conducts retrieval) which has been learned
using sketch-pairs. Solution to the first issue requires a task
where labels can be obtained freely/synthetically during in-
ference itself. Here we make clever use of the vectorised na-
ture of sketches, and utilise a self-supervised task of sketch-
raster to sketch-vector translation [5] to update the feature-
extractor at inference. It follows that via this translation
operation, the model adapts itself to the new style/category
of the test sketch.

The second issue gets tackled at model design. In par-
ticular, we consolidate the said sketch self-reconstruction
module as an auxiliary task within a meta-learning frame-
work [26]. It follows that the model is meta-learned in
a way, such that updates on the auxiliary task only hap-
pens in the inner loop, which then prevents it from dis-
torting the joint embedding space whose updates occurs
elsewhere in the outer loop via a triplet loss. This train-
ing strategy essentially ensures that the trained model now
knows how to accommodate the auxiliary task loss with-
out affecting the latent space too adversely, and accordingly
defends itself against test-time updates from the sketch self-
reconstruction auxiliary task.

More specifically, our framework shares a feature extrac-
tor amongst three diverging branches (Fig. 2 (left)): (i)
a primary branch learns the cross-modal embedding over
a triplet loss [66] using paired sketch-photo information,
(ii) an auxiliary sketch branch that focuses on self-modal
reconstruction to update and condition the shared feature-
extractor towards better sketch-encoding, and (iii) an aux-
iliary photo branch, where we use photo-to-edgemap trans-
lation to condition the photo features. Having this photo
branch also presents the option of updating the model on
the unseen test-set photo-gallery to yield better photo fea-
tures for retrieval, however is not compulsory. Note that
only the auxiliary sketch branch get updated (and hence the
shared feature extractor) at test-time upon a query sketch.

Our contributions are: (a) We offer a fresh extension
on the ZS-SBIR paradigm, by proposing a novel test-time
training framework that dynamically adapts a trained en-

coder to new sketches (b) To retrain transferable cross-
modal embedding knowledge during inference, we propose
a meta-learning framework that integrates primary discrim-
inative learning with auxiliary tasks, such that updates from
the latter are constrained towards benefiting the primary ob-
jective. (c) Extensive experiments and ablation confirm our
method to be superior to existing state-of-the-arts.

2. Related Works
Sketch Based Image Retrieval (SBIR): SBIR involves
finding an image corresponding to a given query-sketch.
Aiming to retrieve photos of the same category, category-
level SBIR [12, 49] began with using handcrafted descrip-
tors [60] like SIFT [31], Gradient Field HOG [22], His-
togram of Edge Local Orientations [44] or Learned Key
Shapes [45], for constructing local [22] or global [42] joint
photo-sketch representations. Shifting to deep-learning,
methods [11, 28, 64] usually trained Siamese-like networks
to fetch similar photos over a distance-metric in a cross-
modal joint embedding space, over ranking losses [12].
Contemporary research include embedding sketch fea-
tures to binary hash-codes [28, 68] for computational ease.
Sketch as a query [10] however, prides in its ability to
model fine-grained details. Research thus advanced to fine-
grained SBIR [7, 38, 52] beginning with deformable-part
models [25]. Aided by new datasets [54, 66], FG-SBIR
flourished with the introduction of triplet-ranking mod-
els [66], learning a joint sketch-photo manifold. Atten-
tion mechanisms along with higher-order losses [54], hy-
brid generative-discriminative cross-domain image genera-
tion [39], textual tags [53] and mixed-modal jigsaw solv-
ing based pre-training strategy [40], enhanced it further.
While Sain et al. [46] discovered cross-modal hierarchy in
sketches, Bhunia et al. [8] employed reinforcement learning
in an early retrieval scenario. Although further works have
addressed low-resource data via semi-supervised learning
[4], or style-diversity in sketches via meta-learning dis-
entanglement [47], training during inference to bridge the
train-test data distribution gap, remains unseen in SBIR.
Zero-Shot Learning: To deal with the data scarcity, a
separate branch of literature has evolved within the SBIR
pipeline that aims to generalise the knowledge learned from
seen training classes to unseen testing categories. A zero-
shot (ZS) SBIR pipeline was first introduced by Yelamarthi
et al. [65], with an aim to minimise sketch-photo domain
gap by approximating photo features from given sketches
via image-to-image translation, thus aligning sketch-photo
features jointly to generalise onto unseen classes. In con-
trast later works [14, 16] used semantic representation
(word2vec) of class labels to learn a joint manifold capa-
ble of semantic transfer to unseen categories. While, [16]
used adversarial training to align sketch, photo and seman-
tic representation, [14] employed a gradient reversal layer



to minimise sketch-photo domain gap. Other works in-
clude preserving training knowledge via knowledge distilla-
tion [29] to improve generalisability, and alleviating sketch-
image heterogeneity via Kronecker fusion layer with graph
convolution [50], thus enhancing semantic relations among
data towards a generative hashing scheme for ZS-SBIR.

While earlier ZS-SBIR methods fixed model weights af-
ter training on seen classes, we advocate for one that adapts
to novel classes during inference. Please note that this
‘adaptation protocol’ must not be confused with that of few-
shot learning [51, 63] which considers access to a few la-
belled samples. We however have no access to labelled data
from unseen categories under ZS-SBIR setup. To adapt to
unseen classes, we thus employ a self-supervised task for
sketch and photo branch each, whose loss could be com-
puted using labels that can be obtained freely/synthetically.
Additionally, this self-supervised objective should imbibe
knowledge of unseen classes via a few gradient update steps
within a reasonable remit of edge device deployment.
Self-supervised Auxiliary Tasks: Constrained by the ab-
sence of labels during inference, our choice of task for
test-time training should be a self-supervised one. Self-
supervision involves designing pretext tasks that can learn
semantic information without human annotations [23], such
as image colorization [69], super-resolution [24], frame or-
der recognition [32], solving jigsaw puzzles [36,40], image
in-painting [41], relative patch location prediction [15], etc.
Importantly, Asano et al. [2] shows self-supervised learn-
ing on a single image, can produce low level features that
generalise well. However, they use complex tuple selec-
tion [32] or patch-sampling strategies [36, 40] and relation-
operations which leads to complex design issues in batch
size, sampling strategies, or data-balancing that need tun-
ing. We thus opt for simple self-modal reconstruction for
test-time training. As an auxiliary task during training, it
should improve robustness of the primary task [20], like
rotation prediction [58] or via entropy minimisation [62].
Similar notion has been used in few-shot learning [55], do-
main generalization [9], and unsupervised domain adapta-
tion [27,57]. Following suit, we use raster-to-vector decod-
ing and image-to-edgemap translation as auxiliary tasks for
sketch and photo branch respectively during training.
Meta Learning: This aims to extract transferable knowl-
edge from a series of related tasks, to help adapt to unseen
tasks with a few training samples [18,61]. Broadly speaking
these algorithms fall in three groups. Metric-based meth-
ods [51, 59] strive to create a metric space where learn-
ing is efficient with just a few samples. Memory network
based approaches [37] attain knowledge across tasks, to
generalise on the unseen task. Optimization-based tech-
niques [18,35,56] optimises a model, such that it can adapt
to any test data quickly. Specifically, we use the popular
model-agnostic meta-learning (MAML) algorithm [18] (en-

hanced to MAML++ [1]), due its compatibility with any
model trained via gradient descent, and diverse application
range with several variants [1,35,43,48]. Besides using it to
condition our model in a test-time scenario during training,
we modify it to meta-train learnable stroke-specific weights
for reconstruction, like learning rates in MetaSGD [26].

3. Background Study
Baseline SBIR: Sketch Based Image Retrieval aims at
retrieving an image pertaining to a sketch query. For cat-
egorical SBIR [12], the image is retrieved from a gallery
having images of different classes, and ideally belongs to
the same category as that of the sketch. Formally, our model
learns an embedding function, Fθ(·) : RH×W×3 → Rd,
mapping a rasterised sketch or photo I to a d-dimensional
feature. Given a gallery of G = {Ci}Mi=1 categories, hav-
ing Ni photos each, our core SBIR model obtains a list
of photo (p) features Ĝ = Fθ({pCi

j }
Ni
j=1|Mi=1). Thereafter,

pairwise distances are calculated and corresponding images
are retrieved over a precision metric [14]. A state-of-the-art
CNN (Fθ(·)) extracts features of query sketch (S), match-
ing photo (P+) and an unmatched one (P−) which are
trained on a triplet loss objective [66], where minimising
the loss signifies bringing the sketch-feature (fS) closer to
the positive photo-feature (fP+ ) while distancing it from
the negative (fP− ) one in the joint embedding space.

Lθ
Tri = max{0,m+ δ(fS , fP+)− δ(fS , fP−)} (1)

where, δ(a, b) = ||a − b||2, is a distance metric and m is a
margin hyperparameter, obtained empirically.
Test-time Training: During inference, given a query-
sketch (ST ), the trained feature extractor (θe) is updated
based on a proxy-task to adapt to this specific test-sample.
This task must be self-supervised to be free of label-cost.
Features then extracted by the updated model (θ̂e) are used
to calculate pairwise distances for retrieval. Constrained by
the unavailability of labels during inference, self-modal re-
construction is a common task-choice. More importantly,
this task is used during training as well, as an auxiliary task
to improve the model’s primary objective. Consequently,
we have three sets of parameters: the shared feature en-
coder (θe), the exclusive primary-task parameters (θp) and
auxiliary-task parameters (θa). During test-time training,
the common feature extractor is updated using the auxiliary
task loss (Laux) to perform primary task on ST as,

min
θe
Laux(S

T ; θe, θa) , fST = Fθ̂e,θp
(ST ) (2)

After operating on ST , θ̂e is discarded as standard prac-
tice, and feature extractor is re-initialised with θe for a fresh
adaptation on the next test sample.

4. Methodology
Overview: We aim to devise a SBIR framework that
learns to alleviate test-train distribution gap by aligning a
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Figure 2. Our Framework. Our model is trained (left) on primary and auxiliary tasks, meta-learning stroke-weights. During inference
(right) the model first updates (optionally) on the test-set photo distribution, followed by sketch-specific test-time training for retrieval.

trained model to the test-data distribution, thus achieving
better retrieval accuracy. To this end, we design a SBIR
model which is trained in a meta-learning framework, aug-
mented via auxiliary training and enhanced (for the first
time) via a test-time training paradigm. First, a feature ex-
tractor (Sec. 3(i)) encodes a query-sketch (S), its matched
photo (P+), and an unmatched one (P−) to obtain features
fS , fP+ and fP− all∈ Rd respectively usingFθe(·). There-
after the model is trained in two branches (Fig. 2). While
the primary branch (θp) instils cross-modal discriminative
knowledge via triplet loss objective on those three features
(Eq. 1), the auxiliary branch (θa) is trained on a self-modal
reconstruction loss to improve primary task. Accordingly,
we perform raster-to-vector decoding for sketch, and photo-
to-edgemap translation for photo, to obtain reconstruction
loss. Furthermore we associate learnable weights to every
sketch-stroke which are meta-learned along with other mod-
ules in a meta-learning framework, to imbibe the knowledge
of relative importance of strokes during reconstruction to-
wards a better retrieval accuracy. For every test sample dur-
ing inference, the feature-extractor is first initialised with
trained parameters (θe). Following Sec. 3(ii), it is updated
via reconstruction loss to adapt to the test distribution. Fea-
tures extracted by the updated model are used for retrieval.

4.1. Model Architecture
Our pipeline starts with a feature-extractor (θe), which

bifurcates into a primary branch (θp) focused at cross-modal
discriminative learning, and an auxiliary branch (θa) for
self-reconstruction task. The feature extractor (shared be-
tween two branches) first encodes a photo or sketch-image
into a d-dimensional feature, Fθe(·) : RH×W×3 → Rd

which is then used accordingly in either branch.
Primary branch : In addition to the backbone feature
extractor, this branch lowers the feature dimension of ex-

tracted feature to dp using a linear layer, Hθp(·) : Rd →
Rdp for better learning. Geared towards instilling a discrim-
inative knowledge, the model is trained on a cross-modal
triplet objective following Eq. 1, as:

Lθe,θp
Tri = max{0,m+ δ(f

dp

S , f
dp

P+)− δ(f
dp

S , f
dp

P−)} (3)

Auxiliary branch : Owing to the supervision-less test-
time training paradigm, we needed to choose an auxiliary
task which (a) is self-supervised, so that it can be performed
free of label-cost during inference and (b) can complement
the primary task in a way such that the extra features learned
provide broader interpretation of input data [30]. We thus
opt for a self-modal reconstruction task for either modality.
In both cases, the latent feature is first reduced to a lower da
dimension. For sketch, as vector coordinates are available,
we perform sketch raster-to-vector decoding.
Sketch Vectorization: In vector-format one can use five-
element vector vt = (xt, yt, q

1
t , q

2
t , q

3
t ) ∈ RT×5 to repre-

sent pen states for stroke-level modelling; T being the se-
quence length. Essentially, (xt, yt) denotes the absolute co-
ordinate value in a normalisedH×W canvas, while the last
three represent binary one-hot vectors [19] of three respec-
tive pen-states: pen touching the paper, pen lifted, and end
of drawing. Starting with a da-dimensional sketch feature
(fda

S ), a linear-embedding layer obtains the initial hidden
state (ht|t=0) of the decoder RNN (θSa ) as: h0 = Whf

da

S +

bh. It is then updated as: ht = RNN(ht−1; [f
da

S , ψt−1]),
where ψt−1 is the last predicted point and [·] signifies
concatenation. A fully-connected layer then predicts five-
element vectors at every time step: ψt =Wyht + by , where
ψt = (xt, yt, q

1
t , q

2
t , q

3
t ) ∈ R2+3 – first two logits for co-

ordinates, last three for pen-states. Using (x̂t, ŷt, q̂
1
t , q̂

2
t , q̂

3
t )

as ground-truth at tth step, mean-square error [47]L(t)
(MSE) =

∥x̂t − xt∥2 + ∥ŷt − yt∥2, and categorical cross-entropy



losses [4] L(t)
CE = −

∑3
i=1 q̂

i
t log

(
exp(qit)∑3

j=1 exp(qjt )

)
are used to

train the absolute coordinate and pen state prediction (soft-
max normalised) respectively, as:

LS
rec(ψt; θe, θ

S
a ) =

1

T

T∑
t=1

(
L(t)

MSE + L(t)
CE

)
(4)

Photo-to-Edgemap Translation : Edgemap holding a
lower domain gap with a sketch (both contain only struc-
tural information) than a photo, enables this task to align
gradients in favour of a better sketch representation, thus
augmenting primary objective better than direct photo-to-
photo translation. An edgemap corresponding to the match-
ing photo is created as E = edge(P+) ∈ RH×W×3 where
edge(·) is a function that extracts an edgemap from a photo
using 2D filters on the grey-scaled input image. Our latent
positive-photo feature (fda

P+ ) is fed to a convolutional de-
coder DecθP

a
(·) : Rdp → RH×W×3 to obtain an edgemap

Ê = Dec(fda

P+). We thus have our reconstruction loss as :

LP
rec(θe, θ

P
a ) = ∥Ê − E∥2 (5)

For notational brevity, at times we use θa = {θSa , θPa }.

4.2. Meta- Learning Auxiliary Reconstruction
Overview: Decreasing the test-train data distribution gap
especially for sketches which hold unconstrained diversity
[47] is quite non-trivial a task. Aiming to alleviate it us-
ing test-time training alone would be an ambitious goal, if
not insufficient. We thus take to the meta-learning training
paradigm [21] where, the goal is to learn good initializa-
tion parameters representing an across-task shared knowl-
edge among related tasks, such that it can quickly adapt
to any novel task, with a few gradient update iterations.
This simulates a test-time training paradigm in the train-
ing itself, which thus conditions the encoder to adapt better
during inference. We modify a popular optimization-based
meta-learning algorithm is model-agnostic meta-learning
(MAML) [18] to suit our purpose.
Task Sampling: In a meta-learning framework [21], a
model is trained from various related labelled tasks. To
sample a task Ti ∼ p(T ) here, we first select a random cat-
egory Ci out of M categories. Out of all sketch-photo pairs
inCi,Ni and ri pairs are randomly chosen for meta-training
(Dtrn

i ) and meta-validation(Dval
i ) respectively. Training

here consists of two nested loops. The inner loop update
is performed over Dtrn with an aim to minimise the loss in
the outer loop over Dval. Within every set, hard negatives
are chosen from rest M − 1 categories ensuring completely
dissimilar instances.
Meta-learning stroke-weights: Furthermore, as sketch
raster-to-vector decoding is a sequential problem, LS

rec in-
volves a summation operation (Eq. 4) over the stroke se-

quence, thus treating every stroke-specific loss equally. Ar-
guably, this task-specific adaptation for sequential recon-
struction could be boosted if weight values for each stroke-
specific loss are learned, such that the model adapts bet-
ter with respect to those strokes holding higher semantic
significance. Intuitively, our model thus learns an across-
task knowledge where given a sketch, properties of cer-
tain strokes could be closer to the encoded knowledge of
MAML’s initialisation parameter [3], to enhance easier re-
trieval once reconstructed. On the contrary, considerable
anomalies could exist among certain strokes that are redun-
dant or distracting during retrieval using average knowledge
encapsulated inside MAML’s initialisation parameter. Con-
sequently, during outer-loop adaptation, the model update
should prioritise optimising with respect to those particu-
lar strokes whose semantic importance is more inclined to-
wards the unknown regarding the model’s initialization. We
thus intend to learn stroke-specific weights for stroke-wise
reconstruction loss instead of averaging over all strokes.
Meta-Optimisation: Regarding factors influencing such
weights, literature shows that gradients used for adap-
tation in inner loop hold knowledge [3] related to dis-
agreement (i.e. this information needs further learning
or assimilation during adaptation) against model’s initial-
ization parameters. Computing gradients for all model-
parameters, being quite cumbersome, we calculate gradi-
ent of tth stroke-specific reconstruction loss with respect
to final decoding step (parameter ϕ) as ∇ϕLS (t)

rec (θe, θ
S
a ).

It is then concatenated with gradients of triplet loss (Eq.
2) which deals with the full sketch representation with re-
spect to ϕ (both gradient matrices being flattened) as Jt =
concat

(
∇ϕLS (t)

rec (θe, θ
S
a ),∇ϕLTri(θe, θp)

)
. We posit that

gradient of the triplet objective and stroke-specific recon-
struction losses guides towards determining how to weigh
different stroke-specific losses. We thus pass this Jt via a
network gη predicting a scalar weight value for t-th stroke-
specific loss as ηt = gη(Jt). Here, gη is designed as a 3-
layer MLP network having parameters η, followed by a sig-
moid to generate weights. Eq. 4 thus becomes:

LS
rec(ψt; θe, θ

S
a ) =

1

T

T∑
t=1

ηt ·
(
L(t)
MSE + L(t)

CE

)
(6)

Summing up, we have our inner loop loss and update as,

Ltrn(θe, θp, θa) = λTriLTri + λrec(LS
rec + LP

rec),

(θ′e, θ
′
p)← (θe, θp)− α∇ΘLtrn(Θ; Dtrn)

(7)

where, Θ = {θe, θp, θa}, α is the learnable inner loop learn-
ing rate and λTri, λrec are hyper-parameters determined em-
pirically. With updated model parameters, the primary ob-
jective is computed as the loss over validation set (Dval) as
Lval = LTri(θ

′
e, θ

′
p; Dval) which updates all model param-

eters. As (θ′e, θ
′
p) depends on θ′e, θ

′
p and θa via inner-loop



update (Eq. 7), a higher order gradient needs to be calcu-
lated for outer loop optimisation with learning rate β as:

(Θ, η, α)← (Θ, η, α)− β∇θ′
e,θ

′
p,η,α

Dval∑
Ti

Lval(θ
′
e
(i)
, θ′p

(i)
)

(8)
The model updates by averaging gradients over a meta-
batchsize of B sampled tasks.

4.3. Test-time Training for SBIR

Once trained, it is now important to align the trained model
parameters to the test-data distribution before using them
to encode test-sketches for retrieval. First, before test-time
training starts, the model is adapted to the test-set photo dis-
tribution using only the photo-to-edgemap auxiliary branch
over a few (τp) gradient steps to update the feature extractor
to θPe . The trained feature extractor (θe) encodes test-photo
P T to fPT = Fθe(S

T ) and uses it to update itself via aux-
iliary reconstruction task-loss LP

rec(P
T ; θe, θ

P
a ) (Eq. 5).

θPe ← θe − αT∇θe,θP
a
LP

rec(Dval
P ) (9)

This aligns the model parameters to the test-set photo dis-
tribution for retrieval. Please note that this step is op-
tional and that one can directly use θe instead, before start-
ing test-time training. Now the photo-updated trained fea-
ture extractor (θPe ) encodes a test-set query-sketch (ST ), to
fST = FθP

e
(ST ). The auxiliary sketch-vectoriser obtains

reconstruction loss LS
T (ψ

T
t ; θPe , θ

S
a ) (Eq. 4), where ψT

t is
the vector-representation of ST . LS

T updates the feature ex-
tractor over τs steps, using which corresponding test-sketch
feature (fTS ) is extracted for retrieval,

θ̂Pe ← θPe − αT∇θe,θaLS
T (θ

P
e , θa,Dval)

fTS = F
θ̂P
e ,θp

(ST )
(10)

where, αT is the learning rate. Once evaluated, the feature-
extractor is re-initialised with the photo-adapted model pa-
rameters (θPe ), or directly θe if choosing to skip photo-
adaptation, for the next test-sample.
5. Experiments
Datasets: For category-level SBIR, we use: (i) Sketchy
[49] (extended) – contains 75k sketches across 125 cate-
gories with about 73k images [28] in total. Following [65]
we split it as 21 testing classes disjoint from rest 104 train-
ing classes which are separated as 73 : 31 for meta-train
: meta-test to avoid photo overlap between Sketchy [49]
and ImageNet [13] datasets. (ii) TU-Berlin Extension [17]
– contains 250 object categories with 80 free-hand sketches
per category. Photo part is extended using 204,489 natural
images of the same categories from [67]. Following [14]
we keep 30 random classes for testing, while 220 train-
ing classes are split randomly as 150 for meta-train and

70 for meta-test. Category-level SBIR is evaluated simi-
lar to [28] using mean average precision (mAP@all) and
precision considering top 200 (P@200) retrievals.
Implementation Details: A VGG-16 network pre-trained
on ImageNet is used as the shared feature extractor with fi-
nal output dimension d = 512. The primary branch linear
layer projects it to dp = 64 for triplet objectives. For aux-
iliary branch, the photo branch reduces to dPa = 128 before
feeding to a decoder consisting of a series of stride-2 convo-
lutions, with BatchNormRelu activation on every convo-
lutional layer except the output that has tanh for activation.
For sketch-decoding a GRU decoder of hidden state size
128 is used. Furthermore, we use Adam optimiser in both
inner and outer loops with learning rates α = 0.0005 (ini-
tial) and β = 0.0001 respectively during meta-learning with
single-step gradient update. During test-time adaptation
learning-rate is empirically set at 0.0001 for both photo and
sketch, with τs = τp = 4 gradient steps. Hyper-parameters
λTri, λrec are empirically set to 0.7 and 0.3 respectively. We
use a meta-batch size of 32 and set margin m to 0.3.

5.1. Competitors
We design several baselines aligned to our motiva-

tion from different perspectives to evaluate our frame-
work. (i) State-of-the-art ZS SBIR methods (SOTA): ZS-
Cross [65] aligns cross-modal sketch-photo features jointly
to generalise onto unseen classes, approximating photo
features from given sketches via image-to-image transla-
tion. While ZS-CCGAN [16] uses semantic representation
(word2vec) of class labels to learn a joint manifold capa-
ble of semantic transfer to unseen categories in an adver-
sarial paradigm, ZS-GRL [14] combines similar semantic
information of class labels with visual sketch information
and trains over a gradient-reversal layer to reduce sketch-
photo domain gap. ZS-SAKE [29] employs knowledge-
distillation paradigm using teacher signal from an ImageNet
pre-trained CNN model and constrained by semantic in-
formation from category-labels to retrieve in a Zero-shot
setting. (ii) Test-time training baselines (TTT): Follow-
ing [58] we design a baseline following our pipeline, TTT-
Rotation with a triplet-loss primary objective and the aux-
iliary task of rotation angle classification on both sketch-
image and photos, without meta-learning. Similarly TTT-
Affine follows [34] in using affine transformations on input
images as auxiliary task for Tes-time-adaptation. (iii) Meta-
Learning Baselines (Meta): Meta-SN-ZS simply employs
vanilla MAML [18] on top of a simple Siamese-network
following [66], trained via triplet loss in both inner and
outer loops, in a zero-shot retrieval framework. It adapts us-
ing inner loop updates across retrieval tasks over categories
in SBIR and over instances in FG-SBIR frameworks. Meta-
Aux-ZS is identical to Meta-SN-ZS except that it adapts us-
ing both the auxiliary task of self-modal image reconstruc-
tion (for both sketch and photo branch) and triplet objective



to minimise only triplet loss in the outer-loop. No test-time
training is involved in either one.
Table 1. Comparative results of our model against other
methods on Categorical SBIR

Methods Sketchy (ext) TU Berlin (ext)
mAP@all P@200 mAP@all P@200

SOTA

ZS-Cross [65] 0.196 0.260 0.005 0.003
ZS-CCGAN [16] 0.312 0.463 0.297 0.435
ZS-GRL [14] 0.334 0.358 0.109 0.121
ZS-SAKE [29] 0.526 0.598 0.475 0.609

B-TTT TTT-Rotation [58] 0.428 0.514 0.337 0.421
TTT-Affine [34] 0.432 0.522 0.351 0.456

B-Meta Meta-SN-ZS 0.368 0.452 0.276 0.402
Meta-Aux-ZS 0.401 0.475 0.318 0.447
Proposed 0.575 0.624 0.507 0.648

5.2. Result Analysis and Discussion
Table 1 shows that methods employing Test-time train-

ing mostly surpass Zero-shot SBIR methods. Among them,
our method consistently outperforms the other state-of-the
arts in retrieval accuracy. ZS-Cross [65] with its simplis-
tic cross-modal training paradigm is quickly surpassed over
by ZS-CCGAN [16] (by 0.116 mAP@all on Sketchy), as
the latter is aided with a cycle consistency loss in an ad-
versarial training paradigm in addition to the guidance from
word2vec embeddings of categories – providing much bet-
ter generalisability for the unseen classes. Although supe-
rior, it fails to outperform ZS-GRL [14] due to the latter’s
usage of the gradient-reversal layer that specifically aims
to create a domain-agnostic embedding in addition to se-
mantic class labels towards improving accuracy. However
in all these methods catastrophic forgetting is a major issue
which unavoidably impacts their performance. ZS-SAKE
[29] specifically focuses on knowledge preservation to re-
duce this effect, with the help of a knowledge-distillation
paradigm, that aims to preserves the knowledge from pre-
trained ImageNet [13] weights while training on the new
dataset. The superior result (0.178 mAP@all more than
ZS-GRL) demonstrates that original domain knowledge pre-
served by ZS-SAKE is not only maintaining its ability to be
adapted back to the original domain but also helping the
model to be more generalizable to the unseen target domain.

Coming to the test-time adaptation paradigm, we report
the result of two state-of-the-art paradigms naively imple-
mented towards our retrieval objective on the two datasets.
TTT-Rotation [58] performs rotation-angle classification as
an auxiliary task with the primary task being cross-modal
triplet loss objective to adjust to test-data distribution dur-
ing inference. The problem of catastrophic forgetting is al-
leviated to an extent due to the shift in focus from learn-
ing a domain-invariant mapping to evolving the latent space
to adjust the test-distribution. Naturally we see a relative
rise in accuracy of 0.94 mAP@all against ZS-GRL . TTT-
Affine [34] having learnable affine transform, enables itself
to align the trained parameters towards the test-distribution
to a greater extent than TTT-Rotation, thus faring slightly

better (0.004) than that in accuracy. Introducing meta-
learning in a zero-shot paradigm on top of basic Siamese
network trained on Triplet loss (Meta-SN-ZS) improves
existing results over the cross-modal ZS experiment (ZS-
Cross) by 0.172 mAP@all on Sketchy [49] . This is because
meta-learning conditions the model to retain and use knowl-
edge acquired across a set of relative tasks to adapt and
generalise onto new tasks in a simulated testing scenario.
Attaching an auxiliary-task branch to the primary and train-
ing it in the inner loop with the primary objective, further
improves result (by 0.035) in the Zero-Shot setting proving
its potential in this area. Our method combines the best of
these worlds to use auxiliary reconstruction task, in a meta-
learning training paradigm, aided with test-time adaptation
for optimal accuracy. Additionally it meta-learns the stroke-
specific weights for reconstruction, towards better enhanc-
ing the primary discriminative objective, thus outperform-
ing the existing methods.

5.3. Ablation Study
We perform a detailed ablative study different architec-

tural choice fro various perspectives in Table 2.

[ii] Is meta-learning important: To judge its contribution
we design an experiment training without the meta-learning
paradigm in the ZS - setup. The model is trained using two
losses (primary and auxiliary) and the auxiliary task updates
the model during test-time training. Results (Type-II in Ta-
ble 2) show a stark decrease (by 0.088 mAP@all) against
the proposed method, showing how firmly it maintains the
discriminative knowledge while training itself, that is oth-
erwise distorted during test-time training. Furthermore us-
ing meta-learning avails the option of meta-learning stroke-
weights which contributes further.

[i] Significance of learnable ηt : To show the efficacy
of the learnable stroke-specific weight for reconstruction
loss, we remove gη simplifying the sketch-reconstruction
loss (Eq. 6) to MSE and cross-entropy loss (Eq. 4). Doing
so (Type-III) results in decrease from the proposed method
signifying learning relative stroke-importance towards re-
construction is beneficial. Furthermore verifying the depen-
dency of gη on gradients from primary objective, we train a
model with gη initialised with a random tensor of fitting di-
mensions. Without the guidance of supporting the primary
objective (discriminative learning), the weights are learned
sub-optimally leading to a slight drop by 0.014 mAP@all.

[iii] Choice of auxiliary task: One of the most signifi-
cant aspect of this test-time training paradigm is choosing
the auxiliary task – not only should it be free of label-cost
but it must be well suited to capture the test-time distribu-
tion over a few gradient updates so as to align model pa-
rameters to the test dataset. Without it the model performs
quite poorly (Type-I). Exploring other alternatives we thus
design a few experiments (Type V-VII) results of which are



Figure 3. Qualitative Zero Shot retrieval results on Sketchy dataset. ZS-Cross (left) vs Ours (right).

shown in Table 2. Type IV (Img2Img) employs image-to-
image translation, decoding the encoded feature via a stride-
2 convolutional decoder with BatchNormRelu activation
as the auxiliary task, for both branches, i.e sketch-image to
sketch-image and photo-to-photo (not edgemap like ours).
Type V performs image-to-image translation on the photo-
branch, keeping sketch branch same as ours for the aux-
iliary task. While Type VI chooses rotation-angle clas-
sification as the auxiliary task on both sketch and image
branch following [58], Type VII employs affine transfor-
mation on the photo and sketch-image in either branch, fol-
lowing the auxiliary-task approach of [34], but keeps the
rest of the training paradigm like meta-learning identical to
ours. In context of SBIR, we observe that sketch raster-

Table 2. Ablative studies (accuracy on Sketchy) .

Type Primary Auxiliary Meta TTT η mAP@all P@200
I ✓ ✗ ✓ - - 0.368 0.452
II ✓ ✓ ✗ ✓ - 0.487 0.576
III ✓ ✓ ✓ ✓ ✗ 0.561 0.610
IV ✓ Img2Img ✓ ✓ ✓ 0.528 0.601
V ✓ Photo-Vec ✓ ✓ ✓ 0.546 0.605
VI ✓ Rotation ✓ ✓ ✓ 0.511 0.596
VII ✓ Affine ✓ ✓ ✓ 0.524 0.597
VIII ✓ Edge-LSTM ✓ ✓ ✓ 0.568 0.619
IX ✓ Edge-TF ✓ ✓ ✓ 0.562 0.615
X ✓ Edge-Offset ✓ ✓ ✓ 0.570 0.622

Ours ✓ ✓ ✓ ✓ ✓ 0.575 0.624

to-vector translation holds significance as Type V performs
better than Type IV. Furthermore, our method’s superior-
ity over Type V confirms photo-to-edgemap translation to
be a better suitable auxiliary task in context of sketches.
While types VI and VII both morph the photo and sketch
as images, apparently the classification objective alone isn’t
sufficiently strong as reconstruction to align model param-
eters adequately to the test distribution. We also compare
efficiency of sketch in terms of vector format – absolute co-
ordinates (ours) vs. offset-coordinate (Type X) [19]. Turns
out the former is better for decoding. Comparing sketch de-
coders between GRU (ours), LSTM (Type VIII) and Trans-
former (TYPE IX), showed GRU as optimum empirically.
[iv] Further insights: Qualitative results on Sketchy [49]
are shown in Fig. 3. Fig. 4 shows that, during training one
single adaptation step is found to be optimal with the high-
est performance gain. Diminishing results on higher up-

dates contradicting [18], might be due to detrimental con-
centration of inner loop on irrelevant sketch details, thus
forgetting learned generic prior knowledge. During infer-
ence however model parameters find four gradient update
steps to be optimal for aligning to the test distribution. More
steps induce confusion, leading to a drop in accuracy. Fur-
thermore, an ablative study (Fig. 5) showed optimal feature
dimension for primary and auxiliary objectives to be 64 and
128 respectively, almost retaining performance with higher
ones. Also, evaluating our model without the optional one-
time update (§4.3) on test-set gallery photos, we obtain a
slight drop in results to 0.560 mAP@all in Sketchy. Com-
pared to 8.8 ms of ZS-Cross, ours takes 19 ms more per
query, due to the additional test-time training involved.

0 1 2 3 4 1 2 3 4 5
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0.60

No. of inner loop updates No. of TTA updates (τs,p)

mAP@all

Figure 4. Model performs optimally at 1 meta-training gradient
update (left) and 4 test-time adaptation updates (right)
.

32 64 128 256 512 32 64 128 256 512

0.52
0.54
0.56
0.58
0.6

Primary branch feature dim (dp) Auxiliary branch feature dim (dp)

mAP@all

Figure 5. Varying feature dimension for primary objective (left) –
optimal = 64, and for auxiliary decoding (right) – optimal = 128.

6. Conclusion
In this paper we extended the definition of ZS-SBIR, ask-

ing it to extend not just to novel categories, but also to new
style of query sketches. We achieve this by proposing a test-
time training paradigm that adapts the trained model using
just one sketch. Firstly, we show that sketch raster-to-vector
translation on query-sketch alone is reliable to bridge the
train-test gap as an auxiliary task. Secondly, we propose
a novel meta-learning paradigm to ensure test-time updates
from this auxiliary task would not be adversely affecting
the joint embedding that is used to conduct retrieval. Exten-
sive experiments with ablative studies show our method to
surpass other state-of-the-arts.
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Clarity on computational overhead:

Delving into the complexity analysis of our method we
explore complexity of a relevant method in this context. The
Table below compares the complexity of ZS-SAKE [29]
with ours. ZS-SAKE is indeed simpler to train, and faster
at test-time. The extra cost is however justifiable by (i) the
ability to handle style changes in addition to novel cate-
gories, (ii) we do not dictate word embedding (as per ZS-
SAKE), but just a single sketch, and (iii) we surpass ZS-
SAKE [29] by a rather significant 9.31% margin (relative
mAP@all).

Method Parameters Time per Forward Pass
ZS-SAKE [29] 27.6 mil. 25.6 ms

Ours 33.8 mil. 110.4 ms

Clarity on auxiliary loss used:

Without the auxiliary objective, test-time training is in-
feasible thus dropping model performance (Table 2, Type-I
in main paper). Analysing further (Type IV-VII), we found
reconstructing stroke-level details optimally conditions the
encoder to a sketch, as it is penalised on stroke-level se-
mantics, proving its superiority in aiding the primary ob-
jective. Furthermore, learning which strokes are significant
towards boosting the primary task (via ηt in Type III) is ad-
vantageous, as some strokes inherently hold more semantic
meaning in a sketch than others.

Clarifying experiments:

Our work differs from [58] in our latent space preser-
vation via meta-learning, and in our auxiliary task which
is optimally suited to sketches. Table below compares the
performance of [27, 62] adjusted for retrieval, against ours.
To clarify, in both Tables 1 and 2, our method uses test-
set photo reconstruction. In Table 2, all methods involving
test-time training and auxiliary task have employed test-set
photo adaptation (TPA) as well. Without it, accuracy dips
slightly by 0.020 mAP@all on average. Table below shows
our method’s accuracy in that setting (Ours w/o TPA).

*Interned with SketchX

Methods
Sketchy (ext) TU Berlin (ext)

mAP@all P@200 mAP@all P@200
B-TENT [62] 0.483 0.574 0.405 0.521
B-SHOT [27] 0.497 0.578 0.425 0.538
Ours w/o TPA 0.561 0.620 0.495 0.642
Ours 0.575 0.624 0.507 0.648

Sensitivity of hyper-parameters:
The initial estimate for some hyper-parameters like mar-

gin value of triplet loss, or initial values of inner and outer
learning rates were inspired from related works [48] and
optimised empirically thereafter. We have experimented
by changing the ratio λTri : λrec from 7:3 to 1:1 which
dipped performance to 0.510 (0.581) mAP@all (P@200)
on Sketchy showing a slight sensitivity on the ratio of learn-
ing objectives. We shall include such hyperparameter sen-
sitivity details on acceptance. For other ablation studies on
sensitivity of the number of gradient steps, of both test-time
training and meta-learning, or on optimal feature dimension
for primary and auxiliary tasks, please refer to Fig. 4 and
Fig. 5 respectively, in the main paper.

Additional visualisations:
Following diagram shows sketches reconstructed via the

decoder (lower) against input (upper).
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Limitations:
Despite the effective paradigm of our proposed method,

there might be some cases, where the model fails to retain
its learnt cross-modal knowledge of the source data. As
evident from the 4th sample in Figure above, the sketch re-
constructed might indulge certain noisy strokes which in-
fers that the test-time training will not always be optimal
for very complex types of sketches.
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