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Abstract

The key challenge in designing a sketch representa-
tion lies with handling the abstract and iconic nature of
sketches. Existing work predominantly utilizes either, (i) a
pixelative format that treats sketches as natural images em-
ploying off-the-shelf CNN-based networks, or (ii) an elabo-
rately designed vector format that leverages the structural
information of drawing orders using sequential RNN-based
methods. While the pixelative format lacks intuitive ex-
ploitation of structural cues, sketches in vector format are
absent in most cases limiting their practical usage. Hence,
in this paper, we propose a lattice structured sketch repre-
sentation that not only removes the bottleneck of requiring
vector data but also preserves the structural cues that vec-
tor data provides. Essentially, sketch lattice is a set of points
sampled from the pixelative format of the sketch using a
lattice graph. We show that our lattice structure is par-
ticularly amenable to structural changes that largely ben-
efits sketch abstraction modeling for generation tasks. Our
lattice representation could be effectively encoded using a
graph model, that uses significantly fewer model parame-
ters (13.5 times lesser) than existing state-of-the-art. Exten-
sive experiments demonstrate the effectiveness of sketch lat-
tice for sketch manipulation, including sketch healing and
image-to-sketch synthesis.

1. Introduction
Research on freehand human sketches has become in-

creasingly popular in recent years. Due to its ubiquitous
ability in recording visual objects [6], sketches form a nat-
ural medium for human-computer interaction. Deriving a
tailor-made representation for sketches sits at the core of
sketch research, and has direct impact on a series of down-
stream applications such as sketch recognition [33, 27, 12],
sketch-based image retrieval [3, 32, 17, 16], sketch-3D
reconstruction [15, 9, 25, 19, 22], and sketch synthesis
[14, 23]. Albeit a pivotal component, designing an effec-
tive representation is challenging since sketches are typi-
cally abstract and iconic.

*Equal contribution
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Figure 1. (a) Given lattice points sampled on input sketches (Left),
our proposed Lattice-GCN-LSTM network can recreate a corre-
sponding vector sketch (Right). (b) Given a corrupted sketch, the
resulting lattice points are used to reconstruct a similar sketch ac-
cordingly. (c) The abstraction level of generated sketches is con-
trollable by varying the density of latticed points. (d) Image-to-
sketch synthesis by dropping a few lattice points along the edge of
an object.

Prior works predominantly relied on encoding sketch in
a pixelative format (i.e., an image) [6, 33, 21]. Although
it provided the convenience of using off-the-shelf convolu-
tional neural network effortlessly re-purposed for sketches,
pixelative format lacks the intuitive exploitation of struc-
tural information. The presence of structural information is
vital for sketch abstraction modeling [6, 20], which in turn
is essential for downstream tasks that dictate structural ma-
nipulation such as sketch generation [7, 4, 10] and sketch
synthesis [14, 23].

RNN-based approaches have consequently emerged as
means to fully explore the sequential nature of sketches [7].
The research convention is to use QuickDraw [8] vector for-
mat where each sketch is represented as a list of offsets in
x and y. Thanks to the stroke-level modeling, these ap-
proaches do offer a degree of flexibility in generation and
synthesis tasks, yet they do so by imposing a strong assump-
tion – all sketches have sequential stroke data to them. This
assumption largely prohibits the application of RNN-based
methods to work with sketches such as those drawn on a
piece of paper. A natural question is therefore – is there a
way to remove the bottleneck on requiring vector data but
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at the same time preserve the structural cues that vector data
provides?

To answer this question, we propose an alternative sketch
representation inspired by the concept of lattice structures –
SketchLattice. We define SketchLattice as a set of points
sampled from the original 2D sketch image using a lattice
graph as shown in Figure 1 (a). Such latticed sketch rep-
resentation, although seemingly simplistic, is remarkably
amenable to structural deformations, thereby providing vi-
tal benefits for sketch abstraction modeling and in subse-
quent downstream sketch generation tasks. Our proposed
latticed representation can be easily and effectively encoded
using a simple off-the-shelf graph convolutional network
(GCN) [12, 5, 28], resulting in considerably fewer model
parameters (13.5 times lesser) as compared to recent state-
of-the-art techniques. This not only makes our proposed
sketch representation easily deployable, thus making further
progress towards practicality, but also reduces the difficulty
in optimization and training to give a competitive perfor-
mance.

Specifically, each point in SketchLattice is regarded as a
graph node. Geometric proximity between nodes serves as
guiding principle for constructing the adjacency matrix to
form graph links. Intuitively, the proposed GCN-based fea-
ture extractor learns the topology of points in a sketch ob-
ject. Despite being simple, our novel sketch representation
is surprisingly effective for sketch generation. In particular,
using the proposed latticed representation, we show how to
recover a corrupted sketch using our Lattice-GCN-LSTM
network, as represented in Figure 1(b). Additionally, we
present a novel aspect in sketch representation, where the
abstraction level in the generated sketch is controllable as
shown in Figure 1(c), subject to the density of points sam-
pled by the lattice graph. Furthermore, our method is also
applicable to the problem of image-to-sketch synthesis by
simply dropping a few key points along the edge of a target
object as depicted in Figure 1(d).

Our contributions are summarized as follows: (i) we
propose SketchLattice, a novel latticed representation for
sketches using an extremely simple formulation i.e., a set of
points sampled from a sketch image using a lattice graph.
(ii) Our latticed representation can be easily and effectively
encoded using a simple graph model that use fewer model
parameters, thereby making important progress towards ef-
ficiency. (iii) We show how the abstraction level of gener-
ated sketches is controllable by varying the density of points
sampled from an image using our lattice graph.

2. Related Work

Sketch Data Format There are mainly two types of data
formats for sketch representation – image-based and se-
quential representation. While the former treats sketch as

a conventional 2D image with pixel values (i.e., the pixela-
tive format), the latter considers sketch as an elaborately de-
signed set of ordered stroke points (i.e., vector format), rep-
resented by offset coordinates along x and y directions with
pen states (touch, lift and end) [7]. Traditional sketch fea-
ture extractors are usually CNN-based approaches [33, 4]
that can directly take sketch image in pixelative format dur-
ing input. However, this is highly redundant due to the
sparsity of line drawings in a sketch image that necessitates
heavy engineering efforts [33]. Additionally, CNN-based
approaches cannot effectively capture structural cues since
it does not encode position and orientation of objects, lead-
ing to sub-par results on generation models.

In contrast, sequential representation is sketch-specific
[8], designed according to the drawing habit of humans
which is constructed stroke-by-stroke. Such sequential,
vector format representation allows modeling sketches us-
ing RNN-based methods. This resulted in impressive re-
sults such as sketch generation and sketch synthesis using
long short-term memory (LSTM) [7, 24]. Although promis-
ing, such RNN-based approaches require a vectorized data
format at the input, which leads to a major bottleneck limit-
ing practical usage in the absence of vector sketches, like
sketches drawn on a piece of paper. Therefore, we aim
to propose an unexplored technique, by employing a more
practical lattice sketch representation, i.e., SketchLattice,
that avoids storing stroke orders while still keeping strong
spatial evidence that vector sketches typically provide.

Graphical Sketch Embedding Graph convolutional net-
works (GCNs) [2, 12] were originally designed to deal with
structured data, such as knowledge graphs or social net-
works, by generalizing neural networks on graphs. In the
past few years, exciting developments have been made that
explore GCNs capabilities for various vision tasks includ-
ing image classification [5], captioning [31], image under-
standing [1], action recognition [13], 3D object detection
[34], and shape analysis [26]. Yet, until recently, a few at-
tempts [30, 29] started to apply GCNs on sketch embedding.
The existing visual sparsity and spatial structure of sketch
strokes are naturally compatible with graphical representa-
tions. However, the dominating approach in sketch research
assumes access to a vector format where the stroke orders
are required, thus resulting in a major limitation in real-
world cases. On contrary, ours provides a generic approach
that explores the geometrical proximity in a latticed repre-
sentation of sketch. We also show how our proposed graph-
ical sketch embedding can be used additionally for tasks, in-
volving sketch generation and image-to-sketch translation.

3. Methodology

Overview We describe the Lattice-GCN-LSTM network
where the central idea is a novel sketch representation tech-
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Figure 2. A schematic representation of Lattice-GCN-LSTM architecture. An input sketch image or the edge map of an image object is
given to our lattice graph to sample lattice points. All overlapping points between the dark pixel in sketch map and uniformly spread lines
in lattice graph are sampled. Given the lattice points, we construct a graph using proximity principles. A graph model is used to encode
SketchLattice into a latent vector. Finally, a generative LSTM decoder recreates a vector sketch which resembles the original sketch image.

nique that (i) transforms an input 2D sketch image S into a
set of points SL = {p1, p2, . . . , pm}, using a lattice graph
Flattice. Each point pi = (x, y) in SL represents the abso-
lute coordinates x and y in the S. We call SL as the lattice
format representation of S. (ii) Our novel lattice format
SL could be seamlessly transformed to a graphical form
G = (V,E) that is encoded into a d-dimensional sketch-
level embedding vector Ψ ∈ Rd using a simple off-the-shelf
GCN-based model. (iii) We observe how this sketch-level
embedding vector Ψ could help in downstream tasks such as
sketch generation by using existing LSTM-based decoding
models. Figure 2 offers a schematic illustration.

3.1. Latticed Sketch

The input to our proposed latticed sketch representation
is a sketch image S ∈ Rw×h where w and h represent the
width and height of S respectively. We extract the latticed
sketch SL from S using the lattice graph Flattice. Our lat-
tice graph Flattice is a grid that constitutes of uniformly
distributed 2n horizontal and vertical lines, arranged in a
criss-cross manner. The optimal value of n for any given
sketch image S, could be empirically determined during in-
ference without further training. As shown in Figure 2, we
construct SL by sampling the set of all overlapping points
SL = {p1, p2, . . . , pm} between a black pixel in sketch im-
age S representing a stroke region, and the 2n horizontal or
vertical lines in Flattice. Formally, we define SL as:

SL = Flattice(S) (1)

Although extremely simple, this novel latticed sketch
representation SL is very informative since it can express
the topology (i.e., overall structure and shape) of the orig-
inal sketch image S, without the need of vector data. Ad-
ditionally, our latticed sketch representation is very flexible
because, (i) there is no constrain for the size of input sketch
image (w × h) and the original aspect ratio is maintained,
(ii) the abstraction level of the generated sketches modulates

depending on the sampling density from the lattice graph
Flattice by varying the value of n. Increasing the value of n
would result in more detailed sketches, whereas decreasing
it would lead to highly abstract sketches. Figure 1(c) and 4
demonstrate how adding more sample points pi changes the
abstraction level of generated sketches.

3.2. Graph Construction

Graph Nodes V The SketchLattice SL can be effec-
tively encoded by a simple graph model which not only
consumes fewer model parameters, thereby increasing ef-
ficiency, but also allows easier optimization resulting in a
model better trained to give a state-of-the-art performance.
For each point pi ∈ SL we calculate vi ∈ V represent-
ing elements of the set V , denoting graph nodes. To ensure
that the encoding process is amenable to structural changes,
each point pi is tokenized by a learnable embedding func-
tion Femb(·) : R2 7→ Rd that maps the absolute point loca-
tion pi = (x, y) to a d-dimensional vector space. Formally,

vi = Femb(pi) (2)

where vi ∈ Rd is the resulting tokenized vector represen-
tation. Maintaining the original aspect ratio, we resize and
pad the input sketch image S ∈ Rw×h to a size of (256, 256)
before applying the lattice graphFlattice. Hence, the vocab-
ulary size of the learned embedding function Femb is 2562.
Our intuition is that, by using an embedding function Femb
that tokenizes each point location (x, y) to a d-dimensional
vector vi, the model would learn to obtain similar embed-
ding features for nearby points. Hence the resulting repre-
sentation would be more robust to the frequently observed
shape deformation and be more amenable that largely ben-
efits sketch abstraction modeling in the generation tasks.
Graph Edges E A straight-forward yet efficacious ap-
proach based on the geometric proximity principles is
adopted to construct the graph edge links among nodes,
based on the corresponding latticed points’ locations pi =



(x, y). Specifically, we first compute the euclidean distance
between every pair of nodes (vi,vj) by di,j = ||pi − pj ||2.
Then we follow either of the two options: (i) Each node
vi ∈ V is connected to its nearest neighbor or (ii) each node
vi ∈ V is connected to its nearby neighbors that are “close
enough”, i.e., norm(di,j) < dT , where norm(di,j) is a
normalized distance in (0,1). dT is a pre-defined distance
threshold whose value is empirically found to be 0.2 in our
case. An adjacency matrix A ∈ Rm×m is constructed by
setting the link strength to ai,j = 1− norm(di,j) for a pair
of linked nodes (vi, vj), such that a smaller distance would
result in a larger score. All the disconnected nodes, ai,j are
set to 0.

3.3. Graphical Sketch Encoder

Given the graph nodes V = {v1,v2, . . . ,vm} and their
corresponding adjacency matrix A, we employ a simple
graph model to compute our final sketch-level latent vec-
tor Ψ ∈ Rd. The resulting vector Ψ allows downstream
applications including sketch healing, and image-to-sketch
translation. We employ a stack of K identical graph encod-
ing layers, followed by a fully connected (FC) layer, batch
normalization and non-linear activation function Tanh.

For each ith node vki in graph encoding layer k ∈ [1,K],
a feature propagation step is executed to produce the up-
dated node feature v̂ki , where each node vki attends to all its
linked neighbors with non-zero link strength, defined in the
adjacency matrix A. We compute v̂ki as:

v̂ki =

m∑
j=1

ai,jv
k
j (3)

Such a mechanism incorporating spatial awareness not only
facilitates message passing among connected nodes, but
also adds robustness to missing parts in a lattice sketch
while encoding. This greatly benefits downstream tasks
such as sketch healing [24]. A graph convolution is applied
to the resulting rich spatially dependent feature v̂ki as:

vk+1
i = [ReLU(MLPΘ(v̂ki ))]×2 (4)

where each encoding layer consists of two multi-layer per-
ceptron (MLP) units, both of which is followed by a rec-
tified linear unit (ReLU). We employ dropout and residual
connection in each encoding layer as shown in Figure 2.
The final feature vectors of nodes from the Kth graph en-
coding layer are integrated into a single vector which is fur-
ther fed into a sequence of FC layer, batch normalization,
and Tanh to compute our sketch-level latent representation
Ψ ∈ Rd.

3.4. Sketch Generation by LSTM decoder

Following [7, 4, 24], we design a generative LSTM de-
coder that generates the sequential sketch strokes in vec-
tor format. Accordingly, the sketch-level latent vector Ψ

is projected into two vectors µ ∈ Rd and σ ∈ Rd, then
from which we can sample a random vector z ∈ Rd by us-
ing the reparameterization trick [11] to introduce stochas-
ticity in the generation process via an IID Gaussian variable
N (0, I):

z = µ+ σ �N (0, I)

µ = WµΨ, σ = exp(
WσΨ

2
)

(5)

where Wµ and Wσ are learned through backpropagation
[7]. The latent vector z is used as a condition for the LSTM
decoder to sequentially predict sketch strokes. Specifically,
the output stroke representation st−1 from the previous time
step, together with latent vector z serve as inputs to update
the LSTM hidden state ht−1 by:

ht = LSTMforward(ht−1; [st−1, z]) (6)

where [·] represents concatenation operation. Next, a linear
layer is used to predict a output stroke representation for
current time step, i.e., st = Wsht+bs, whereWs and bs are
learnable weight and bias. The final stroke coordinates are
derived from st with the help of Gaussian mixture models,
to generate the vector sketch format, represented by S ′. We
refer readers to [7, 8] for more details.

3.5. Model Training and Deployment

Our proposed graphical sketch encoder and the genera-
tive LSTM decoder are trained end-to-end for sketch gen-
eration. Note that, although we require vector sketches to
train the LSTM decoder for the purpose of vector sketch
generation, our model fully works on image sketch input,
rather than vector data during inference. Following [7], the
goal is to minimize the negative log-likelihood of the gener-
ated probability distribution to explain the training data S,
which can be defined as:

minEqφ(z|S)[− log pθ(S|z)] (7)

which seeks to reconstruct the vector sketch representation
S from the predicted latent vector z. Upon training, the de-
coder generates a vector sketch conditioned on the graphi-
cal encoded latent vector z, obtained from our lattice sketch
SL given any image sketch, thus being more effective for
practical applications.

4. Experiments
The ability to be amenable to structural changes and en-

able appropriate abstraction modeling for sketch generation
are the two key aspects that our proposed SketchLattice rep-
resentation aims to address. Specifically, we adopt the chal-
lenging task of sketch healing to testify the robustness of
our novel sketch representation towards frequently occur-
ring structural deformation in sketches. Additionally, we



also observe how our proposed approach could be utilized
to perform the task of image-to-sketch translation.

Implementation details We implement our model on
PyTorch [18] using a single Nvidia Tesla T4 GPU. Opti-
mization is performed using the Adam optimizer with pa-
rameters β1 = 0.9, β2 = 0.99 and ε = 10−8. Value of
learning rate is set to 10−3 along with a decay rate of 0.999
in every iteration. A gradient clipping strategy is adopted
to prevent gradient from exploding during the training of
LSTM decoder. Essentially, we force the gradient value to
1.0 if the actual value is larger than 1.0. The optimal value
for the number of graph encoding layer is K = 2.

4.1. Sketch Healing

The task of sketch healing [24] was proposed akin to
vector sketch synthesis. Specifically, given a partial sketch
drawing, the objective is to recreate a sketch which can best
resemble the partial sketch.

From full SL to partial ŜL Given the lattice sketch rep-
resentation SL from an input sketch image S, we randomly
drop a fraction of lattice points in SL with some probability
Pmask to generate a partial SketchLattice, represented by
ŜL. Hence, the graph edges linked to the removed node
are also disconnected, thereby simultaneously modifying
the adjacency matrix A. One can think of Pmask as the
corruption level of an input sketch image.

4.1.1 Experimental Settings

Dataset Following the footsteps of [27, 24], we use
QuickDraw [8] for evaluation since it is currently the largest
doodle sketch dataset. More specifically, a small subset of
10 categories are selected such that it includes (i) both com-
plex and simple drawings, (ii) intra-category objects hav-
ing high degree of resemblance among each other, and (iii)
presence of common life object categories that contain di-
verse sub-categories such as bus and umbrella. In each
category we use 70k training and 1k testing sketches. The
selected 10 categories are as follows: airplane, angel,
apple, butterfly, bus, cake, fish, spider, The
Great Wall, umbrella.

Competitors We compare our proposed Lattice-GCN-
LSTM network with three most popular alternatives for
vector sketch generation: SketchRNN (SR) [7], Sketch-
Pix2seq (Sp2s) [4], and SketchHealer (SH) [24]. Input to
SketchRNN is a set of offsets in x and y directions from
a vector sketch representation. The key to SketchRNN is
a sequence-to-sequence model which is trained without the
KL-divergence term. This is done to maintain the fairness of
comparison since the KL-divergence term has shown to be
beneficial for multi-class scenarios [4]. SketchPix2seq on
the other hand replaces its encoding module with a CNN-

based encoder that accepts a pixelative format i.e., sketch
image. It is expected that such a design will help cap-
ture better visual information. Note that, although both
SketchRNN and SketchPix2seq were not specifically de-
signed for the task of sketch healing, following [24], we em-
ploy these techniques since they are procedural-wise com-
patible after being re-purposed. The only work specifically
addressing the task of sketch healing is SketchHealer [24].
Given a vector sketch as input, SketchHealer converts it into
a graphical form where each stroke is considered as a node.
Next, visual image patches are extracted from each node
region. A GCN-based model is applied for encoding a ran-
dom vector z. The decoding procedure of SketchHealer is
identical to ours where z is fed into a generative LSTM
decoder to generate the corresponding vector sketch. Ad-
ditionally, we retrain a variant of SketchHealer only using
visual cues (SH-VC), for which stroke order is unavailable.
Hence, geometric proximity principles are utilized to con-
struct graph edges, similar to ours. This examines the per-
formance of SH [24] in the absence of vector sketches.

Evaluation setup We adopt a similar evaluation setup
in [23] and [24] for quantitative evaluation to understand
the effectiveness of our novel latticed sketch representa-
tion. First, we evaluate the quality of generated vec-
tor sketches (transformed to pixelative format), via sketch
recognition accuracy. A pre-trained multi-category clas-
sifier with AlexNet architecture is used, which is trained
on the training split of 345 QuickDraw categories. Higher
recognition accuracy essentially signifies the ability of the
network to generate realistic sketches. It also indicates that
the network is able to accurately model the underlying data
distribution by effectively encoding a sketch into an accu-
rate and informative sketch representation. We use 1000
testing sketches from each of the 10 selected categories for
a thorough evaluation. Second, we judge the recognizability
of the encoded sketch-level latent vector Ψ by performing
a sketch-to-sketch retrieval task. The objective is, given the
encoded representation of a sketch Ψ, we expect to retrieve
sketches of the same category from a gallery of sketches.
A higher retrieval accuracy signifies that the network has a
strong sketch healing ability, due to its amenable and robust
sketch representation.

4.1.2 Results

Qualitative Results We illustrate some examples pro-
duced by our lattice-based sketch generator under different
values of Pmask in Figure 3. We can observe that (i) our
latticed representation is robust to partial missing parts such
that ours can still generate a novel complete sketch even up
to Pmask = 30%. (ii) The generated sketch is sensitive to
the number of the obtained sampling points, where more
points lead to greater details in the generated sketch. Tak-
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Figure 3. Exemplary results of generated sketch from SketchLattice under different corruption level of mask probability Pmask in Quick-
Draw dataset. With an increase of Pmask, the generated sketch becomes more abstract. For Pmask ≤ 30% we observe satisfactory
generated sketches, but for Pmask = 50%, the generated new sketches are struggle to faithfully recover the original sketch.

Figure 4. Examples showing how adding more lattice points in
different stages (color coded), result in the Lattice-GCN-LSTM
network to progressively generate more detailed representation of
the category.

ing the example of cake as shown in Figure 3, we observe
how the bottom and candle regions are simplified when in-
creasing Pmask. (iii) On further lifting Pmask to 50%, our
model can hardly generate a satisfactory sketch, given the
severe absence of input sampling points.

We further show that the abstraction level of generated
sketch modulates when varying the number and position of
input lattice points, as shown in Figure 4. For example, if
we only drop points to form the wings of butterfly, the re-
sulting generated butterfly will be extremely simple. While
the body and antenna start to show up when we produce
more points to convey the intention of such corresponding
details. Similar trends can be found in other classes as well.

Quantitative Results As discussed in Section 4.1.1, we
compare the performance of different models under the two
metrics (recognition accuracy and Top-1 retrieval) as shown
in Table 1. We can observe from Table 1 that our approach
outperforms other baseline methods on recognition accu-
racy, suggesting that the healed sketches obtained from ours
are more likely to be recognized as objects in the correct
categories. Importantly, we can also observe that, unlike

Table 1. Recognition accuracy (Acc) and Retrieval results (Top-1)
according to different corruption levels (Pmask). We use “nearby”
proximity principle and optimal value of n = 32. Notice that
neither vector format (VF) input nor visual cues (VC) are required
by using our method during test.

Method VF VC #Params Pmask Acc Top-1

SR [7] 3 7 0.67 M 10% 25.08% 50.65%
30% 3.44% 43.48%

Sp2s [4] 7 3 1.36 M 10% 24.26% 45.20%
30% 10.54% 27.66%

SH [24] 3 3 1.10 M 10% 50.78% 85.74%
30% 43.26% 85.47%

SH-VC [24] 7 3 1.10 M 10% - 58.48%
30% - 50.87%

Ours 7 7 0.08 M 10% 55.50% 76.02%
30% 54.79% 73.71%

other competitors which are very sensitive to the corruption
level, ours can maintain a stable recognition accuracy even
when Pmask increases up to 30%. For the task of sketch-
to-sketch retrieval, we can see that ours achieves the second
best, which is inferior to SketchHealer. However, Sketch-
Healer depends heavily on stroke order provided by vec-
torized sketches, evidenced by the dramatic decrease of re-
trieval performance (Table 1 SH vs SH-VC). This signifies
the importance and superiority of our approach in the ab-
sence of vector input, which is a common practice in real-
world cases. In addition, our network is much lighter than
the other competitors having far less parameters (13.5 times
lesser than SketchHealer), since our approach avoids the
use of expensive CNN-based operation. We further include
two classes circle and clock as distraction to apple
for evaluation. A slightly better result 77.80% (vs 76.02%)
can be observed (12 classes, Pmask=10%), suggesting good
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Figure 5. Qualitative retrieval results (Top 6) for sketch-to-sketch
retrieval for QuickDraw categories under different corruption lev-
els of Pmask. Red bounding boxes denote false positive.

Figure 6. T-SNE plot on sketch-level latent vector Ψ for the se-
lected 10 QuickDraw categories, that demonstrate the discrimina-
tive power of our lattice-based graphical encoder. Intra-category
instances tend to cluster together, suggesting category-level dis-
criminative ability.

scalibility and robustness of our latticed representation. Fig-
ure 5 shows some examples of sketch-to-sketch retrieval.

Visualization of Ψ To further visualize the discrimina-
tive power of our lattice-based graphical encoder, we ran-
domly select 100 sketches from each class in the test set,
and visualize their latent vectors Ψ using t-SNE in Figure 6.
We observe that intra-category instances tend to cluster to-
gether, suggesting a category-level discriminative ability.

Ablation Study A thorough ablative study using sketch

Table 2. Ablative study (Top-1 and Top-3 recognition accuracy)
on QuickDraw measuring the contribution of (i) sampling density
or Grid n from our lattice graph Flattice (ii) residual connection
in latticed-based graphical encoder (iii) effective proximity princi-
ple to construct graph from lattice points; for different corruption
values of Pmask = {10%, 30%}.

Grid Residual Proximity Top-1 Top-3

O
ur

s
(P

m
a
s
k

=
1
0
%

)

8
7 nearest 26.56% 33.77%
3 nearest 36.16% 45.82%
3 nearby 38.86% 51.36%

16
7 nearest 14.47% 19.12%
3 nearest 40.64% 50.05%
3 nearby 42.56% 51.71%

32 3 nearby 55.50% 64.72%
64 3 nearby 45.71% 53.56%

O
ur

s
(P

m
a
s
k

=
3
0
%

)

8
7 nearest 16.97% 24.02%
3 nearest 34.70% 43.76%
3 nearby 36.41% 47.75%

16
7 nearest 13.76% 18.43%
3 nearest 40.59% 49.56%
3 nearby 39.07% 48.41%

32 3 nearby 54.79% 64.74%
64 3 nearby 45.07% 53.50%

recognition accuracy, is conducted to verify the effective-
ness of our different design choices, such as (i) the size
of lattice graph, (ii) proximity principle for graph construc-
tion, and (iii) importance of residual connection used in our
graphical sketch encoder. As shown in Table 2, we can ob-
serve that (i) increasing the value of n, that will simultane-
ously increase density of sampling lattice points from SL,
directly transpires in an improvement of recognition accu-
racy. From n > 32 we start to observe saturation of per-
formance, thereby indicating the optimal value for n = 32.
(ii) For construction of graph, we observe that more neigh-
bors (nearby) works better than using only the nearest one
for graph construction. (iii) removing residual connection
leads to significant drop in performance, thereby establish-
ing its importance.

On Complex Sketches To testify the robustness and ap-
plicability of our proposed latticed representation, we fur-
ther investigate the performance when dealing with com-
plex data. Specifically, we examine the recognition accu-
racy of the most complicated sketches (top 25%) over all
categories, based on the number of strokes. From the re-
sults shown in Table 3, we can see that ours outperforms
other competitors when healing the most complex sketches.

Table 3. Sketch recognition accuracy on the most complex cases,
i.e., top 25% sketches (stroke-wise) over all categories.

Pmask SR [7] Sp2s [4] SH [24] Ours
10% 0.26 0.18 0.39 0.43
30% 0.03 0.08 0.37 0.42



Human Study To gain more insights about the fidelity
of the healed sketches, a human study is additionally con-
ducted. We recruited 10 participants. 50 sketch samples
across all 10 classes were randomly selected. Each sam-
ple has two corrupted instances associated, at mask ratio
10% and 30%, respectively. For each corrupted sketch, we
generate a group of healed sketches using different methods
(SketchHealer, SketchRNN, SketchPix2seq, and ours). We
show each participant, the corrupted sketch, and the group
of four healed versions in random order. Each participant is
then asked to pick a healed sketch that best resembles the
corrupted input. Results in Table 4 reveals that according
to human, sketches healed by our method resemble the cor-
rupted input the best, at both corruption levels.

Table 4. Human study on fidelity of healed sketches (in %).

Pmask SR [7] Sp2s [4] SH [24] Ours
10% 5.80 11.55 38.98 43.67
30% 1.46 7.60 26.70 64.24

4.2. Image-to-Sketch Synthesis

Our Lattice-GCN-LSTM network can be applied to
image-to-sketch translation. Essentially, given an input im-
age, the corresponding edges are extracted using an off-the-
shelf edge extractor [35]. Next, we transform the edge map
into a latticed sketch representation using our lattice graph.
The resulting SketchLattice could be seamlessly encoded
via our graphical encoder. Finally, a vector sketch can be
produced using the generative LSTM decoder. Our objec-
tive is to generate a sketch that best resembles the ground-
truth sketch drawn by humans. Once trained, for any in-
put image, we can obtain some representative lattice points
based on the corresponding edges and lattice graph. Then,
our generative LSTM decoder can generate a sketch from
the sketch-level encoded representation Ψ, as stated in sec-
tion 3.4.
Experimental Settings We use QMUL-shoe-v2 [32], a
fine-grained sketch-based image retrieval dataset, to evalu-
ate our image-to-sketch synthesis approach. In total, there
are 6648 one-to-one mappings of image-to-sketch pairs.
The dataset is split into two parts, i.e., 6000 pairs for train-
ing and the rest of 648 pairs for testing. We chose the value
of n for our lattice graph as 32 and adopt the “nearby” strat-
egy for graph construction. LS-SCC [23], a current state-
of-the-art, is adopted for comparison.
Human Study We conduct a user study that judges two
aspects: (i) reality of the generated sketches, i.e., whether a
sketch “looks” like being drawn by a human or not, and (ii)
similarity between the produced sketch and its target photo.
Specifically, we show triplets of images, i.e., a photo shoe,
and two corresponding sketches generated by LS-SCC [23]
and ours in random order to 10 new participants. Each par-

(a) (b) (c) (f)(d) (e) (g)
Figure 7. Image-to-sketch synthesis examples. (a) The original
photos from Shoes-V2 dataset. (b) The lattice points on edge of the
photo shoes. (c) Sketches generated by our model. (d) The points
introduced by human referred to the photos. (e) Sketches given by
our model using lattice points shown in (d). (f) Sketches gener-
ated by LS-SCC [23] for comparison. (g) Human drawn sketches
according to the photos.

Table 5. Human study on reality (REAL %) and similarity (SIM
%) of the generated sketches.

Method REAL SIM
LS-SCC [23] 44.82 49.77

Ours 55.18 50.23

ticipant is asked to, (i) choose which of the two sketches
“looks” more like a human drawing (REAL), and (ii) iden-
tify the sketch that best resembles the photo shoe (SIM).

Results and Analysis Some qualitative results are shown
in Figure 7, where we can see that results from both LS-
SCC [23] and ours are far from satisfactory when compared
to the human-drawn sketches, yet our generated sketches
depict more detailed features, such as the “heel”, “sole” and
the “zipper”. The human study results in Table 5 suggest
that the produced sketches by our model are closer to hu-
man drawing, while equally effective to depict real shoes
compared to LS-SCC.

5. Conclusion
We introduced a novel sketch representation, SketchLat-

tice, that not only removes the bottleneck on having vec-
tor data, but also preserves the essential structural cues that
vector data provides. This result in a sketch representation
that is particularly amenable to structural changes that al-
lows better abstraction modeling. We show this new rep-
resentation helps multiple sketch manipulation tasks, such
as sketch healing and image-to-sketch synthesis, where it
outperforms state-of-the-art alternatives despite using sig-
nificantly less parameters.
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