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Abstract

Sketching enables many exciting applications, notably,
image retrieval. The fear-to-sketch problem (i.e., “I can’t
sketch”) has however proven to be fatal for its widespread
adoption. This paper tackles this “fear” head on, and for
the first time, proposes an auxiliary module for existing re-
trieval models that predominantly lets the users sketch with-
out having to worry. We first conducted a pilot study that
revealed the secret lies in the existence of noisy strokes, but
not so much of the “I can’t sketch”. We consequently design
a stroke subset selector that detects noisy strokes, leaving
only those which make a positive contribution towards suc-
cessful retrieval. Our Reinforcement Learning based for-
mulation quantifies the importance of each stroke present
in a given subset, based on the extent to which that stroke
contributes to retrieval. When combined with pre-trained
retrieval models as a pre-processing module, we achieve a
significant gain of 8%-10% over standard baselines and in
turn report new state-of-the-art performance. Last but not
least, we demonstrate the selector once trained, can also be
used in a plug-and-play manner to empower various sketch
applications in ways that were not previously possible.

1. Introduction

Thanks to the convenience of interactive touchscreen de-
vices, sketch-based image retrieval (SBIR) [12, 13, 15, 39]
has emerged as a practical means of image research that
is complementary to the conventional text-based retrieval
[26]. Although initially developed for a category-level set-
ting [43, 37, 60], of late SBIR has undertaken a fine-grained
shift to better reflect the inherent fine-grained characteristics
(pose, appearance detail, etc) of sketches [47, 57, &].

Despite great strides made [4, 34, 1 1], the fear-to-sketch
has proven to be fatal for its omnipresence — a “I can’t
sketch” reply is often the end of it. This “fear” is predom-
inant for fine-grained SBIR (FG-SBIR), where the system
dictates users to produce even more faithful and diligent
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Figure 1: (a) While the average ranking percentile increases
as the sketching proceeds from starting towards completion,
unwanted sudden drops have been noticed for many individ-
ual sketches due to noisy/irrelevant strokes drawn. (b) The
same thing is visualised with number of samples in the third
axis to get an overall statistics on QMUL-Shoe-V2 dataset.

sketches than that required for category-level retrieval [12].

In this paper, we tackle this “fear” head-on and pro-
pose for the first time a pre-processing module for FG-SBIR
that essentially let the users sketch without the worry of “7
can’t”. We first experimentally show that, in most cases it
is not about how bad a sketch is — most can sketch (even a
rough outline) — the devil lies in the fact that users typically
draw irrelevant (noisy) strokes that are detrimental to the
overall retrieval performance (see Section 3). This observa-
tion has largely inspired us to alleviate the “can’t sketch”
problem by eliminating the noisy strokes through selecting
an optimal subset that can lead to effective retrieval.

This problem might sound trivial enough — e.g., how
about considering all possible stroke subsets as training
samples to gain model invariance against noisy strokes? Al-
beit theoretically possible, the highly complex nature of this
process (i.e., O(2V)) quickly renders this naive solution
infeasible, especially when the number of strokes in free-
hand sketches can range from an average of N = 9 to a
max of N = 15 in fine-grained SBIR datasets (QMUL-
ShoeV2/ChairV2 [57, 47]). Most importantly, augmenting
the training data by random stroke dropping would lead to
a noisy gradient during training. This is because out of all
possible subsets, many of these augmented sketch subsets



are too coarse/incomplete to convey any meaningful infor-
mation to represent the paired photo. Therefore, instead
of naively learning the invariance, we advocate for finding
meaningful subsets that can sustain efficient retrieval.

Our solution generally rests with detecting noisy strokes
and leaving only those that positively contribute to success-
ful retrieval. We achieve that by proposing a mechanism to
quantify the importance of each stroke present in a given
stroke-set, based on the extent to which that stroke is wor-
thy for retrieval (i.e, makes a positive contribution). We
work on vector sketches[5] in order to utilise stroke-level
information, and propose a sketch stroke subset selector
that learns to determine a binary action for every stroke —
whether to include that particular stroke to the query stroke
subset, or not. The stroke subset selector is designed via
a hierarchical Recurrent Neural Network (RNN) that mod-
els the compositional relationship among the strokes. Once
the stroke subset is obtained, it is first rasterized then passed
through a pre-trained FG-SBIR model [57] to obtain a rank-
ing of target photos against the ground-truth photo. The
main objective is to select a particular subset that will rank
the paired ground-truth photo towards the top of the ranking
list. We use Reinforcement Learning (RL) based training
due to the non-differentiability of rasterization operation.
As explicit stroke-level ground-truth for the optimal subset
is absent, we seek to train our stroke-subset selector with the
help of pre-trained FG-SBIR for reward computation. In
particular, we use the actor-critic version of proximal policy
optimisation (PPO) to train the stroke subset selector.

Apart from the main objective of noisy stroke elimina-
tion, the proposed method also enables a few secondary
sketch applications (Section 5) in a plug-and-play manner.
First, we show that a pre-trained stroke selector can be used
as a stroke importance quantifier to guide users to produce
a sketch “just” enough for successful retrieval. Second, we
demonstrate that it can significantly speed up existing works
on interactive “on-the-fly” retrieval [8] removing the need
for incomplete rasterized sketch to be unnecessarily passed
for inference multiple times. Third, besides benefiting FG-
SBIR, our subset selector module can also act as a faithful
sketch data augmenter over random stroke dropping with-
out much computational overhead. That is, instead of costly
operation like sketch deformation [59] or unfaithful approx-
imation like edge/contour-map as soft ground-truths [10],
users can effortlessly generate n most representative sub-
sets to augment training for many downstream tasks.

In summary our contributions are, (a) We tackle the fear-
to-sketch problem for sketch-based image retrieval for the
first time, (b) We formulate the “can’t sketch” problem as
stroke subset selection problem following detailed experi-
mental analysis, (c) We propose a RL-based framework for
stroke subset selection that learns through interacting with
a pre-trained retrieval model. (d) We demonstrate our pre-

trained subset selector can empower other sketch applica-
tions in a plug-and-plug manner.

2. Related Works

Category-level SBIR: Category-level SBIR aims at re-
trieving category-specific photos from user given query
sketches. Like any other retrieval system, Deep Neural
Networks have become a de-facto choice for any recent
SBIR frameworks [15, 13, 37, 60, 12, 7] over early hand-
engineered feature descriptors [50]. Overall, category level
SBIR makes use of Siamese networks based on either CNN
[12, 13], RNN [54], Transformer [37] or their combinations
[12] along with a triplet-ranking objective to learn a joint
embedding space. A distance metric is used to rank the
gallery photos against the learned embedding space for a
given query sketch for retrieval. Further efforts have been
made through zero-shot SBIR [13, 56] for cross-category
generalisation, and employing binary hash-code embedding
[29, 43] to reduce the computational complexity.

Fine-grained SBIR: Sketch holds a noteworthy advan-
tage in its potential to depict fine-grained properties of the
target image, which are hard to describe via other query
mediums [46] like text or attribute. Consequently, interest
surged in fine-grained SBIR [57], which aims at instance-
specific matching for a user given query sketch. Initially
starting with graph-matching models [34], FG-SBIR re-
search gained traction with the advent of various deep-
learning based approaches [57, 47, 8, 4]. Yu et al. [57] first
pioneered deep triplet-ranking based siamese networks for
learning a joint embedding space with instance-wise match-
ing criteria. This was further augmented via attention with
higher-order retrieval loss [47], cross-domain image gen-
eration [35], text tags [40], etc. Recent FG-SBIR works
include advanced methods like hierarchical co-attention
[40], reinforcement learning-based early retrieval [8], semi-
supervised generation-retrieval joint training [4], etc.
While sketches are significantly subjective to user’s style
[41] and vary considerably depending on the drawer’s draw-
ing skill [8], these earlier works assumed the existing an-
notated fine-grained dataset to be perfect. In other words, a
rigid assumption is made that every annotated paired sketch
is a perfect depiction of the paired photo. In this work, we
argue that ‘all sketches are sketchy’, which holds stronger
significance for fine-grained SBIR, as every stroke of an-
notated sketch [58] represents a specific part of the paired
photo, and the free-flow nature of amateur sketching is
likely to introduce noise no matter how carefully it is drawn.

Modelling Partial Sketches:  “Sketch” being an inter-
active medium, is drawn sequentially in a stroke-by-stroke
manner. Moreover, due to its subjective nature, the same
sketch might be perceived as partial or complete based on
the user’s perception. Users can retrieve photos [8], cre-
ate [51] imaginative visual-art, or edit existing photos [22]



through repeated interactions with the Al agent. Therefore,
on-the-fly interaction with sketches requires sketch-based
models to be capable of handling partial sketches. For in-
stance, Sketch-RNN [17] can predict probable final sketch
endings using a variational autoencoder trained on the vec-
tor sketch coordinates. Furthermore, attempts have been
made to directly recognise partial sketches [28] and achieve
sketch-to-photo generation [16] from incomplete sketch in-
put, where both works involve a sketch-completion module
based on image-to-image translation. Recently, on-the-fly
FG-SBIR [&] has been introduced to retrieve even from a
few elementary strokes as soon as the users start drawing.
Overall, these works try to include random synthetic partial
sketches during training to achieve their respective goals,
but here we aim to answer “whether a partial sketch has
sufficient representative information/discriminative poten-
tial to retrieve photos faithfully”. Furthermore, we aim to
quantify the instant at which a sequentially drawn sketch
would reach the optimum threshold point where it is repre-
sentative enough for downstream tasks (e.g., retrieval). By
doing so, we can faithfully train models with sufficiently
representative partial sketches instead of randomly drop-
ping strokes and ignoring instances where the synthetic par-
tial sketch is too coarse to convey any meaning.

Reinforcement Learning in Vision: Reinforcement
Learning (RL) [23] has been applied in different vision
problems [27, 52]. RL becomes handy when there exists a
non-differentiable way to quantify the goodness of the net-
work’s state unlike differentiable loss function with hard-
labels. Instead, learning progresses via interactions [ 14, 19]
with the environment. Particularly in sketch community,
RL has been leveraged for modelling sketch abstraction
[32, 317, retrieval [8, 4], and designing competitive sketch-
ing agent [6]. Here, our objective is to engage an RL agent
to get rid of noisy sketch strokes for better retrieval.

Learning from noisy labels: Despite significant
progress from the community-generated labelled data, ac-
curate labelling is challenging even for experienced do-
main experts [45]. Therefore, a separate topic of study
[45, 61, 61] emerged, which aims at learning robust mod-
els even from the noisy data distribution. While the exist-
ing works [ 18, 49] mainly consider having access to a large,
noisy dataset as well as a subset of carefully cleaned data for
validation , our situation is even more difficult than usual.
We assume that every annotated sketch is not an absolutely
perfect matching sketch of the paired photo. Therefore, we
aim to develop a noise-tolerant framework for FG-SBIR.

3. Pilot Study: What’s Wrong with FG-SBIR?

Baseline FG-SBIR: Instead of complicated pre-training
[36] or joint-training [4], we use a three branch state-
of-the-art Siamese network [4] as our baseline retrieval
model, which is considered to be a strong baseline till

date. Each branch starts from ImageNet pre-trained VGG-
16 [24], sharing equal weights. Given an input image
I € RIXWX3 e extract the convolutional feature-map
F(I), which upon global average pooling followed by lo
normalisation generates a d dimensional feature embed-
ding. This model has been trained with an anchor sketch
(a), a positive (p) photo, and a negative (n) photo triplets
{a,p,n} using triplet-loss [53]. Triplet-loss aims at in-
creasing the distance between anchor sketch and negative
photo 6= = ||F(a) — F(n)||,, while simultaneously de-
creasing the same between anchor sketch and positive photo
6t = ||F(a) — F(p)||,. Therefore, the triplet-loss with
margin £ > 0 can be written as:

Lrriper = max{0,67 — 6 + u} (D
Dual representation of sketch:  Recent study has em-
phasised on the dual representation [5] of sketch for self-
supervised feature learning. In rasterized pixel modality Z,
sketch can be represented as spatially extended image of
size RT*WX3_On the other side, in vector modality V, the
same sketch can be characterised by a sequence of strokes
(s1, 82, , sk ) where each stroke is a sequence of succes-
sive points s; = (v{,vh,--- , v} ), and each point is rep-
resented by an absolute 2D coordinate v, = (¢, %) in a
H x W canvas. Here, K is number of strokes and [V; is the
number of points inside i*" stroke. Individual strokes arise
due to pen up/down [17] movement. Although sketch vec-
tors can easily be recorded through touch screen-devices,
generation of the corresponding rasterized sketch image
needs a costly [55] rasterization operation R : V — Z.
Either modality, raster or vector, has its own merits and de-
merits [5]. Apart from being more computationally effi-
cient [55] than raster domain, vector modality also contains
the stroke-by-stroke temporal information [17]. Nonethe-
less, sketch vectors lack the spatial information [5] which
is critical to model the fine-grained details [4, 8]. Con-
sequently, rasterized sketch image is the standard choice
[36, 41, 40, 57] for FG-SBIR despite having a higher com-
putational overhead and lacking temporal information.

Preliminary analysis:  The performance barrier due to ir-
relevant strokes gets noticed under on-the-fly FG-SBIR [£]
setup. Instead of only evaluating the complete sketch, we
start rendering at the end of every new k?" stroke drawn
as the rasterized sketch image ST = R([s1, 82, ,sk))
where & = {1,2,---, K}, and pass it through the pre-
trained baseline FG-SBIR model to get the feature repre-
sentation F(S7), followed by ranking the gallery images
against it. We make these following observations on Shoe-
V2 [57] dataset (Linear Limit): (i) As the sketch proceeds
towards completion, the rank is supposed to be improved,
however, we notice some unexpected dips in the perfor-
mance in the later part of the drawing episode. This signi-
fies that the later irrelevant strokes play a detrimental role,
thereby degrading the retrieval performance (Fig. 1). (ii)



Compared to top@ 1(top@5) accuracy of 33.43%(67.81%)
on using complete sketch for retrieval, if we consider best
rank achieved at any of the instant during the sketch draw-
ing episode as the retrieved result, top@ 1(top@5) accuracy
extends to 42.54%(73.28%). (iii) Further, we note that the
percentage of instances where subsequently added strokes
drops the performance compared to the previous version S¥
of the same sketch is 43.44%, which is a critical number.

Ablation on upper limit:  Prior analysis unfolds the ne-
cessity of dealing with irrelevant stroke, and we hypothe-
sise that in many cases a subset of the strokes K' < K
could better retrieve the paired photo by excluding the ir-
relevant ones. Different people follow varying stroke order
for sketching. Therefore, in order to simulate different pos-
sible stroke orders and to estimate the upper limit that we
can achieve through the smart stroke-subset selector, we do
the following study. Given K strokes in a sketch, we form
(2K — 1) stroke subsets taking any number of strokes at a
time. Unlike the “on-the-fly” [8] protocol, this setting does
not stick to a pre-recorded sequential order, rather it aims
to find if there exists any subset that can retrieve the paired
photo better than the entire sketch set. Under this setting,
we achieve an exceptionally high top@ 1(top@5) accuracy
of 66.37%(88.31%). However, evaluating with every pos-
sible stroke combination during real-time inference is im-
practical, and we do not have any explicit way to select
one final result. Therefore, in this work, we seek to build
a smart stroke-subset selector as a pre-processing module
which when plugged in before any pre-trained FG-SBIR
model [57, 46], will aim to construct the most representative
subset to improve the overall accuracy.

4. Noisy Stroke Tolerant FG-SBIR

Overview:  Our preliminary study motivates us to de-
sign a stroke-subset selector to eliminate the noisy strokes
for FG-SBIR. While raster sketch image is essential [4] to
model the fine-grained correspondence, the stroke-level se-
quential information is missing in raster modality. There-
fore, taking advantage of the dual representation [5] of the
sketch, we model the stroke subset selector on the sequen-
tial vector space. In summary, our noise-tolerant FG-SBIR
consists of two following modules connected in cascade:
(a) stroke-subset selector as pre-processing module work-
ing in vector space and (b) pretrained FG-SBIR F that uses
rasterized version of predicted subset for final retrieval.

4.1. Stroke Subset Selector

Model:  Given sketch-photo pair (.5, P), the sketch .S can
be represented as both raster image S; and stroke-level se-
quential vector Sy = (s1, 82, -+ , Sk ). We design a stroke-
subset selector X'(-) that takes Sy as input, and aim to pre-
dict an optimal subset Sy = X (Sy) with K’ strokes where
K' < K. However, selecting the optimal subset of stroke

is an ill-posed problem. Firstly, there is no explicit label
which represents the optimal stroke subset. In fact, there
might be many sub-sets which can lead to successful re-
trieval. Furthermore, annotating the optimal stroke-subsets
for the whole training dataset via brute-force iteration is
computationally impractical [0].

In our framework, we treat stroke subset selector as a
binary categorical classification problem. In other words,
for a sketch of K strokes, we get an output of size R¥*2,
where every row is softmax normalised and it represents
a probability distribution p(a;|s;) over two classes: a €
{select,ignore}. However, we do not have any ex-
plicit one-hot labels for this binary classification task.
Therefore, we let the stroke sub-set selector agent to inter-
act with the pre-trained FG-SBIR model, and X is learned
using a pre-trained FG-SBIR model F as a critic which pro-
vides the training signal to X’.

Stroke Subset Selector X(-)

Clipped Proximal
Policy Gradient

Rasterization

FG-SBIR
b
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Figure 2: Illustration of Noise Tolerant FG-SBIR frame-
work. Stroke Subset Selector X'(-) acts as a pre-processing
module in the sketch vector space to eliminate the noisy
strokes. Selected stroke subset is then rasterized and fed
through an existing pre-trained FG-SBIR model for reward
calculation, which is optimised by Proximal Policy Optimi-
sation. For brevity, actor-only version is shown here.

Architecture:  To design the architecture of stroke-level
selector, we aim at preserving localised stroke-level infor-
mation, as well as the compositional relationship [ 1] among
the strokes, which together conveys the overall semantic
meaning. Therefore, we employ a two-level hierarchical
model comprising of a local stroke-embedding network (Ep)
and global relational network (RRy) to enrich each stroke-
level feature about the global semantics. In particular,
we feed individual stroke of size R™i*2 having N; points
though a local stroke-embedding network & (e.g. RNN,
LSTM or Transformer) whose weights of & are shared
across strokes. We take the final hidden-state feature as the
localised representation féi € R for ith stroke. There-
after, feature representation of K such strokes having size
of RE* 4= are further fed to a global relational network (Ry)
whose final hidden state f9 € R9 captures the global se-
mantic information of the whole sketch. Taking inspiration
from residual learning [20], we fuse the global feature with



individual stroke-level feature through a residual connec-
tion with LayerNorm [3]. In concrete, every stroke feature
enriched by global-local compositional hierarchy is repre-
sented by fq = LayerNorm(fl + f9) € R% We im-
plement both & and Ry through a one layer LSTM with
hidden state size 128. Further, we apply a shared linear
layer (Cp) to get p(a;|s;) = softmax(Wsti +bx), where
Wy € R%*2 and by € R2. We group three modules
{Ray,Ey,Cy} of stroke subset selector as Xy. See Fig. 2.

4.2. Training Procedure

Necessity of RL: Due to the unavailability of ground-
truth for optimum strokes, we rely on the pre-trained FG-
SBIR model to learn the optimum stroke-subset selec-
tion strategy. In particular, given probability distribution
p(a;|s;) € R? for every stroke over {select,ignore},
we can sample from categorical distribution as a; ~
categorical([p(@seiect|Si), P(@ignore|si)]), and thereby
we will be getting a stroke subset as Sy, with K’ strokes,
where K’ < K. In order to get the training signal from
pre-trained FG-SBIR model F, we need to feed the sub-
set sketch through F. For that, we need to convert the se-
quential sketch vector to raster sketch image through ras-
terization S; = R(Sy ), as fine-grained SBIR model only
[4, 8] works on raster image space. While subset sampling
could be relaxed by Gumbel-Softmax [2 1] operation for dif-
ferentiablity, non-differentiable rasterization operation R (-)
squeeze us to use Policy-Gradient [48] from Reinforcement
Learning (RL) literature [23].

MDP Formulation: In particular, given an input sketch
Sy (initial state), the stroke-subset selector (Xy) acts a pol-
icy network which takes action on selecting every stroke,
and we get an updated state as subset-sketch Sy (next
state). In order to train the policy network, we calculate
reward using F as a critic. Therefore, we can form the tu-
ple of four elements (initial_state, action, reward,
next_state) that is typically required to train any RL
model. In order to model the existence of multiple pos-
sible successful subsets, we unroll this sequential Markov
Decision Process (MDP) T' times starting from the com-
plete sketch vector. In other words, for each sketch data, we
sequentially sample the subset strokes 7' times to learn the
multi-modal nature of true stroke subsets. Empirically we
keep episode length T' = 5.

Reward Design: Our objective is to select the opti-
mum set of stroke which can retrieve the paired photo
with minimum rank (e.g. best scenario: rank 1). In
other words, pairwise-distance between the query sketch
and paired photo embeddings should be lower than that of
query sketch and rest other photos of the gallery. As F
is fixed, we can pre-compute the features of all M gallery
photos as G € RM*P _ thus eliminating the burden of re-
peatedly computing the photo features. During stroke sub-

set selector training, we just need to calculate the feature
embedding F(S) of rasterized version of predicted subset
sketch, and we can calculate rank of paired photo using G
and paired-photo index efficiently. We compute the reward
both in the ranking space as well as in the feature embed-
ding space using standard triplet loss on F(S7) following
Eqgn. 1, which is found to give better stability and faster
training convergence. In particular, we want to minimise
the rank of the paired photo and triplet loss simultaneously.
Following the conventional norm of reward maximisation,
we define the reward (R) as weighted summation of inverse
of the rank and negative triplet loss as follows:

1
R = Wi - m + wa - (7£Tm'plet) (2)

Actor Critic PPO: We make use of actor-critic version
of Proximal Policy Optimisation (PPO) with clipped sur-
rogate objective [42] to train our stroke-subset selector. In
particular, the very basic policy gradient [48] objective that
is to be minimised could be written as:

| X
LPG(G) =% Zlogpg(aﬂsi) ‘R 3)

For sampling efficiency, using the idea of Importance
Sampling [33], PPO maintains an older policy pj(a;ls;),
and thus Conservative Pohcﬁ Iteration (CPI) objective be-
comes LEFI(9) = —L 3" () - R, where 7;(6) =
log pg(a;|s:)/log py(a;|s;). Further on, the clipped sur-
rogate objective PPO can be written as LELIF(9)
-+ 1-[(:1 clip(r;(#),1 —e,1 — €)), which aims to pe-
nalise too large policy update with hyperparameter ¢ = 0.2.
We take a minimum of the clipped and unclipped objective,
so the final objective is a lower bound (i.e., a pessimistic
bound) on the unclipped objective. The final actor only ver-
sion PPO objective becomes:

K
LA(0) = —% > min(LEPF, L) (4)
To reduce the variancé, ihe actor-critic version of PPO
make use of a learned state-value function V (S) where S
is the sketch vector S = (s1, 2, , Sk ). V(S) shares pa-
rameter with actor network X}, where only the last linear
layer (Cy) is replaced by a new linear layer upon a single
latent vector (accumulated stroke-wise features by averag-
ing), predicting a scalar value that tries to approximate the
reward value. Thus, the final loss function combines the
policy surrogate and value function error time together with
a entropy bonus (E,,) to ensure sufficient exploration is:

LAC' _ K Z

where, ¢; and ¢y are coefficients. As we unroll the se-
quential stroke-subset selection process for 7' = 5, for ev-
ery sample the loss accumulated over the MDP episode is

LS LAC().

761 Vb ) R)2+C2En) &)



S. Applications of Stroke-Subset Selector

Resistance against noisy strokes:  Collected sketch la-
bels, which are used to train the initial fine-grained SBIR
model are also noisy. The proposed stroke-subset selector
not only assists during inference by noisy-stroke elimina-
tion, but also helps in cleaning training data, which in turn
can boost the performance to some extent. In particular,
we train the FG-SBIR model and Stroke-Subset Selector
in stage-wise alternative manner, with the FG-SBIR model
using clean sketch labels produced by the trained stroke-
subset selector. Our method thus offers a plausible way to
alleviate the latent/hidden noises of a FG-SBIR dataset [57].

Modelling ability to retrieve:  As the critic network tries
to approximate the scalar reward value which is a measure
of retrieval performance, we can use the critic-network to
quantify the retrieval ability at any instant of a sketching
episode. Higher scalar score from the critic signifies bet-
ter retrieval ability. To wit, we ask the question whether a
partial sketch is good enough for retrieval or not. Thus, in-
stead of feeding rasterized partial sketch multiple times for
on-the-fly [8] retrieval, we can save significant computation
cost by feeding only after it gains a potential retrieval abil-
ity. Moreover, as both our actor and critic networks work in
sketch vector modality, it adds less computational burden.

On-the-fly FG-SBIR: Training from Partial Sketches:
State-of-the-art on-the-fly FG-SBIR [&] employs continu-
ous RL for training using ranking objective. A supervised
triplet-loss [59] based training, augmented with synthetic
partial sketches obtained through random stroke-dropping
is claimed to be sub-optimal, as randomly dropped strokes
frequently banish crucial details, resulting in the augmented
partial sketch containing insufficient information to depict
the paired photo. In contrast, we use our stroke-subset se-
lector to create several augmented partial versions of the
same sketch, each with sufficient retrievability. While con-
tinuous RL is time intensive to train and allegedly unstable
[23], we can use simple triplet-loss based supervised learn-
ing with multiple meaningful augmented partial sketches.

6. Experiments

Datasets: Two publicly available FG-SBIR datasets
[57, 34, 8] namely QMUL-Shoe-V2 and QMUL-Chair-V2
are used in our experiments. Apart from having instance-
wise paired sketch-photo, these datasets also contain the
sketch coordinate information, and thus would enable us to
train the stroke-subset selector using sketch vector modal-
ity. We use the standard training/testing split used by the ex-
isting state-of-the-arts. In particular, out of 6,730 (1, 800)
sketches and 2, 000 (400) photos from Shoe-V2 (Chair-V2)
dataset, 6,051 sketches (1,275) and 1, 800 (300) photos are
used for training respectively, and the rest are for testing [8].

Implementation: =~ We have conducted all our experi-

ments on an 11-GB Nvidia RTX 2080-Ti GPU with Py-
Torch. For fine-grained SBIR, we have used ImageNet [38]
pre-trained VGG-16 [44] backbone with feature embedding
dimension d = 512. We train the FG-SBIR model using
Adam optimiser [25] with a learning rate of 0.0001, batch
size 16, and margin value of 0.2 for triplet loss. For stroke
subset selector, we model local stroke embedding network
and global relational network using one-layer LSTM with
hidden state size 128 for each. The critic network shares the
same weights with that of the actor, with only the last linear
layer Cp being replaced by a new one that predicts a single
scalar value. We train it for 2000 epoch using Adam op-
timiser with initial learning rate 10~% till 100 epochs, then
reducing to 10~°. We use a batch size of 16 and keep an old
policy network for importance sampling [33] with episode
length T' = 5, and sampled instances are stored in a replay
buffer. We update the current policy network at every 20 it-
eration using sampled instances from the replay buffer, and
the old policy network’s weights are copied from the cur-
rent one for subsequent sampling. We empirically set both
w1, wsz to 1, and keep ¢c; = 0.5, co = 0.01, e = 0.2.

Evaluation Metric:  (a) Standard FG-SBIR: Aligning
to the existing state-of-the-art FG-SBIR frameworks [36,

], we use percentage of sketches having true-matched
photo in the top-1 (acc.@1) and top-5 (acc.@5) lists to as-
sess the FG-SBIR performance. (b) On-the-fly FG-SBIR:
Furthermore, to showcase the early retrieval performance
from partial sketch, adhering to prior early-retrieval work
[8] we employ two plots namely, (i)ranking-percentile and
(ii) mlnk vs. percentage of sketch. Higher area under these
curves indicate better early-retrieval potential. For the sake
of simplicity, we call area under curves (i) and (ii) as T@A
and r@B through the rest of the paper.

Competitors:  To the best of our knowledge, no earlier
works have directly attempted to design a Noise-Tolerant
FG-SBIR model in the SBIR literature. Therefore, we com-
pare with the existing standard FG-SBIR works appeared
in the literature, as well as, we develop some self-designed
competitive baselines under the assumption of ‘all sketches
are sketchy’ — which explicitly intend to learn invariance
against noisy strokes. (a) State-of-the-arts (SOTA): While
Triplet-SN [57] uses Sketch-A-Net backbone along with
triplet loss, Triplet-Attn-HOLEF extends [57] with spatial
attention and higher order ranking loss. Recent works in-
clude: Jigsaw-Pretrain with self-supervised pre-training,
Triplet-RL [8] employing RL-based fine-tuning, Style-
MeUP involving MAML training, Semi-Sup [4] incorpo-
rating semi-supervised paradigm, and Cross-Hier [40] util-
ising cross-modal hierarchy with costly paired-embedding.
(b) Self-designed Baselines (BL): We create multiple ver-
sion of the same sketch by randomly dropping strokes (en-
suring percentage of sketch vector length never drops be-
low 80%) or by synthetically adding random noisy stroke



Table 1: Results under Standard FG-SBIR setup.

Chair-V2 Shoe-V2
Acc@1 Acc@5 Acc@1 Acc@5
Triplet-SN [57] 474% 714% 287% 63.5%
Triplet-Attn-HOLEF [47] 50.7% 73.6% 31.2% 66.6%
Triplet-RL [8] 512% 73.8% 30.8% 65.1%

SOTA Mixed-Jigsaw [34] 56.1% 753% 36.5% 68.9%

Semi-Sup [4] 60.2% 78.1% 39.1% 69.9%
StyleMeUp [41] 62.8% 79.6% 364% 68.1%
Cross-Hier [40] 62.4% 79.1% 362% 67.8%

" (B)aseline-Siamese  53.3% 74.3% 334% 67.8%
BL Augmnt 54.1% 74.6% 339% 68.2%
StyleMeUp+Augment  56.1% 76.9% 36.9% 69.9%
Contrastive+Augment  58.8% 77.1% 37.6% 70.1%

I:m;[; © Upper-Limit 78.6% 903% 663% 88.3%
Linear-Limit 59.4% 71.3% 425% 73.2%

Proposed

patches similar to [30]. Augment aims to learn the invari-
ance against noisy stroke by adding them inside training.
This is further advanced by StyleMeUp+Augment where
synthetic noisy/augmented sketches are mixed in the inner-
loop of [41] to learn invariance by optimising outer-loop
on real sketches. Contrastive+Augment imposes an ad-
ditional contrastive loss [9] such that the distance between
two augmented versions of same sketch should be lower
than that of with a random other sketch. Our pre-trained
baseline FG-SBIR model is termed as B-Siamese.

6.1. Performance Analysis

The comparative analysis is shown in Table 1. Over-
all, we observe a significantly improved performance of our
proposed Noise-Resistant fine-grained SBIR employing a
stroke-subset selector as a pre-processing neural agent com-
pared to the existing state-of-the-art. The early works tried
to address different architectural modifications [46, 34], and
later on the field of fine-grained SBIR witnessed successive
improvements through adaptation of different paradigms
like self-supervised learning [36], meta-learning [41], semi-
supervised learning [4], etc. As opposed to these works,
we underpin an important phenomenon of noisy strokes,
which is inherent to FG-SBIR. Most interestingly, our sim-
ple stroke-subset selector can improve the performance of
baseline B-Siamese model by an approximate margin of
10.31% without any complicated joint-training of Semi-
Sup [4], costly hierarchical paired embedding of Cross-
Hier [40], or meta-learning cumbersome feature transfor-
mation layer of StyleMeUp [41]. Furthermore, the per-
formance of Augmnt baseline is slightly better than our
baseline pre-trained FG-SBIR as it learns some invariance
from augmented/partial sketch. While we experienced dif-
ficulty in stable training for StyleMeUp+Augment, Con-
trastive+Augment appears as a simple and straightforward
way to learn the invariance against noisy strokes. Instead of
modelling invariance, we aim to eliminate the noisy strokes,
thus giving a freedom of explainability through visualisa-
tion. Despite using complicated architectures [40, 4], SOTA

fails even to beat the accuracy of Linear-Limit (refer to sec-
tion 3), while we can. Nevertheless, we suppress it by keep-
ing the simple baseline FG-SBIR untouched and prepend-
ing a simple stroke-selector agent — working on a cheaper
vector modality for efficient deployment.

6.2. Further Analysis and Insights

Ability to retrieve/classify for partial sketches: The
scalar value predicted by our learned state-value function
(critic-network) [42] signifies the retrieval ability of par-
tial sketch with the notion of higher being the better. We
here train our model with a reward of mlnk for easy in-
terpretability. Once the stroke-subset selector with actor-
critic version is trained, we feed the sketch to the critic net-
work (in vector space) at a progressive step of 5% comple-
tion, and record the predicted scalar value at every instant.
At the same time, we rasterize every partial instance and
feed through pre-trained FG-SBIR to calculate the resul-
tant ranking percentile of the paired photo. In Fig. 7, the
high correlation demonstrates that the partial sketch with
a higher scalar score by the critic network tends to have a
higher average ranking percentile (ARP), while those with a
lesser score result in lower ARP. Quantitatively, the top@5
accuracy for partial sketches is 80.1%, which have a higher
predicted scalar score than a threshold of % This validates
the potential of our critic network in quantifying if a par-
tial sketch is sufficient for retrieval. Suppose we repeat the
same with the negative of the classification loss as a reward
for a pre-trained classification network. In that case as well,
we observe a similar consistent behaviour for partial sketch
classification, indicating our approach to be generic for var-
ious sketch-related downstream tasks. See § supplementary.
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Figure 3: (a) Retrieval ability of partial sketch: correlation
between critic network V(S) predicted score and ranking
percentile (b) Performance at varying training data size with
stroke-subset selector based data augmentation.

Data Augmentation: Our elementary study reveals that
there exists multiple possible subsets which can retrieve the
paired photo faithfully. In particular, we use our policy net-
work to get stroke wise importance measure using p(a;|s;)
towards the retrieval objectives. Through categorical sam-
pling of p(a;|s;), we can create multiple augmented ver-
sions of the same sketch to increase the training data size.
To validate this, we compute the performance of baseline
retrieval model at varying training data size with our sketch
augmentation strategy in Fig. 7. While accuracy remains



marginally better towards the high data regime, stroke sub-
set selection based strategy excels the standard supervised
counter-part by a significant margin, thus proving the effi-
cacy of our smart data-augmentation approach.

On-the-Fly Retrieval: Training a model with partial
sketches generated by random stroke-dropping gives rise to
noisy gradient, and thus this naive baseline falls short com-
pared to RL-based fine-tuning that consider the complete
sketch drawing episode for training. In lieu of RL-based
fine-tuning [8], we train an on-the-fly retrieval model from
meaningful (holds ability to retrieve) partial sketches aug-
mented through our critic network that have a higher scalar
score than 55. While training a continuous RL pipeline [8]
is unstable and time-consuming, we achieve a competitive
on-the-fly r@A(r@B) performance of 85.78(21.1) with ba-
sic triplet-loss based model trained with smartly augmented
partial sketches compared to 85.38 (21.24) as claimed in
[8] on ShoeV2. From Fig. 4, we can see that at very early
few instances, RL-Based fine-tuning [8] performs better,
while ours achieve a significantly better performance as the
drawing episode proceeds towards completion. While early
sketch drawing episode is too coarse that hardly it can re-
trieve, through modelling the retrieval ability (with thresh-
old of 1 7o) of partial sketches, we can reduce the number
of time we need to feed the rasterized sketch by 42.2% with
very little drop in performance (r@ A(r@B): 85.07 (20.98)).
Thus modelling partial sketches lead to significant compu-
tational edge under on-the-fly setting.
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Figure 4: Comparative results under on-the-fly setup (Shoe-
V2), visualised through percentage of sketch. Higher area
under the plots indicates better early retrieval performance.

Percentage of sketch

Resistance to Noisy Stroke:  The significance of stroke
subset selector is quantitatively shown in Table 1. While it
validates our potential under inherent low-magnitude noise
existed in the dataset (shown in Fig. 5), we further aim to see
how our method works on extreme noisy situation. In par-
ticular, we augment the training sketches by synthetic noisy
patches, and train our subset selector with a pre-trained re-
trieval model. During testing, we synthetically add noisy
strokes [30], and pass it through stroke-subset selector (pre-
processing module) before feeding it to the retrieval model.
While excluding the selector, the top@1 (top@5) drops to
13.4%(44.9%) in presence of synthetic noises, our stroke
subset selector can improve them to 37.2%(68.2%) by elim-
inating the synthetic noisy strokes (see Fig. 6).
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Figure 5: Examples showing selected subset performing
better (rank in box) than complete sketch from ShoeV2.
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Figure 6: Examples showing ability to perform (rank in
box) under synthetic noisy sketch input on ShoeV2.
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Ablation on Design: (i) Instead of designing the stroke
subset selector through hierarchical LSTM, another straight
forward way is to use one layer bidirectional LSTM, where
every coordinate point is being fed to each time step. How-
ever, the top@1(top@5) lags behind by 4.9%(6.7%) than
ours, which verifies the necessity of hierarchical modelling
of sketch vectors to consider the compositional relation-
ship in our problem. Replacing LSTM by Transformer
leads to no meaningful improvement in our case. (ii) Be-
ing a pre-processing step, we compare the extra time re-
quired for selecting the optimal stroke set. In particular, it
adds extra 22.4% multiply-add operations and 18.3% ex-
tra CPU time compared standard baseline FG-SBIR. (iii)
Compared to different RL methods [42], we get best results
with PPO actor-critic version with clipped surrogate objec-
tive that beats its actor-only alternative by 1.7% top@1 ac-
curacy(ShoeV2). Importantly, training with critic network
leads to one important byproduct of modelling retrieval
ability of partial sketches. (iv) Exploring different possi-
ble reward functions, we conclude that combining rewards
from both ranking and feature embedding space through
triplet loss gives most optimum performance than ranking
only counterpart by extra 1.2% top@1 accuracy (ShoeV2).
Please refer to supplementary for more details.

7. Conclusion

In this paper, we tackle the “fear to sketch” issue by
proposing an intelligent stroke subset selector that automat-
ically selects the most representative stroke subset from the
entire query stroke set. Our stroke subset selector can de-
tect and eliminate irrelevant (noisy) strokes, thus boosting
performance of any off-the-shelf FG-SBIR framework. To
this end, we designed an RL-based framework, which learns
to form an optimal stroke subset by interacting with a pre-
trained FG-SBIR model. We also show how the proposed
selector can augment other sketch applications in a plug-
and-play manner.
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8. Comparative Study with different RL methods

We compare with different RL methods [42, 2], starting from Vanilla Policy Gradient, Deep Q-Learning, TRPO, to variants
of PPO. For our use-case we get best results (Table 2) with PPO actor-critic version with clipped surrogate objective, where
the critic network leads to one important byproduct of modelling retrieval ability of partial sketches.

Table 2: Performance analysis using different RL approaches.

Chair-V2 Shoe-V2
Acc@1 Acc@5 Acc@l Acc@5
Vanilla Policy Gradient  61.4% 78.6% 40.1% 71.9%
Deep Q-Learning 61.9% 789% 40.7% 71.8%
TRPO 60.8% 782% 39.8% 70.2%
PPO Actor-Only KL 62.8% 785% 423% 72.8%
PPO Actor-Only Clipped 639%  789% 43.1% 74.5%
PPO Actor-Critic KL 63.8% 78.7% 42.1% 73.7%
PPO Actor-Critic Clipped 64.8%  79.1% 43.7%  74.9%

9. Comparative Study with different reward functions

We conducted experiments with different possible reward designs as shown in Table 3. Empirically, we found that com-
bining rewards from both ranking and feature embedding space through triplet loss offers most optimum performance.

Table 3: Performance analysis using different reward designs.

Chair-V2 Shoe-V2
Rewards Acc@] Acc@5 Acc@]l Acc@5
-rank 63.5% 78.6% 42.6% T73.7%
L 642% 788%  432%  T4.2%
rank
-Liriplet 62.4% 781% 41.6% 72.7%
1 60.2% 773% 38.8% 68.6%

Liriplette

A Livipler 648%  791%  437%  74.9%

10. Classification Ability and Data Augmentation for sketch classification

Similar to fine-grained retrieval [8, 4], we extend our RL-based stroke-subset selector framework for classification task to
judge if the critic network could be used to judge the recognition potential from partial sketch. To this end, we use negative of
cross-entropy loss as the reward to train the stroke-subset selector under a pre-trained sketch classification network (Resnet50)
on TU-Berlin dataset [5]. We obtain a similar correlation between critic network predicted score and classification accuracy
as shown in Fig. 7. In brief, the samples having higher scalar score predicted by the critic network tends to have a higher
classification accuracy, thus proving the efficiency of modelling recognition ability of sketches through our framework.

Similarly, one can use the stroke-subset selector (policy network) to augment the sketches for classification problem.
Performance at varying training data regime is shown in Fig. 7 on TU-Berlin dataset.

11. Motivation on removing “fear” for sketching

By removing “fear”, we meant injecting that extra confidence to the users, knowing that even if they can not sketch well,
the system will still be able to return favourable results.
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Figure 7: (a) Retrieval ability of partial sketch: correlation between critic network V(S) predicted score and ranking percentile
(b) Performance at varying training data size with stroke-subset selector based data augmentation.
12. What happens with extreme cases?

The extreme case of completely random junk can be handled by our critic network, which will assign a low retrieval ability
score, helping us to sidestep such unusable instances. On the other hand, critic network assigns progressively higher score
for sketches from professional artists, and achieves retrieval threshold much earlier. Fig. 8 offers examples of how the critic
score changes for a good/professional sketch (top) and a complete random one (bottom).
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13. Clarity of binary stroke selection scheme

In our framework, we have modelled the stroke selection through categorical distribution (softmax normalisation over
R?). However, as the reviewer suggested, one could model using Bernoulli distribution where the stroke selector would
predict a single sigmoid normalised scalar value R'. We tried both approaches and empirically found the use of categorical
distribution to be more stable with faster convergence and quantitatively better results (by 1.41% Acc@1 on ShoeV2). We
will specifically mention this in the supplementary with a thorough ablative study upon acceptance.

14. Training-time comparison with baselines

For the baselines, we do not augment the sketches using all possible stroke-subset combinations (with cost O(QN ).
Taking into account all possible stroke subsets not only slows down the training data-pipeline, but many of these augmented
sketch subsets are too coarse/incomplete to convey any useful information about the paired photo. Some initial experiments
indicated model collapse due to noisy gradients raised from such overly coarse/incomplete sketch-subsets. Therefore, in
order to eliminate noisy gradients in the baselines, we drop strokes at random while ensuring that the percentage of sketch
vector length never falls below a certain threshold — 80% was empirically found to yield optimum performance.

To ensure fair comparisons, we also keep each model training until we find no further improvement in both the loss value
and accuracy on the validation set for consecutive 20K iterations. Furthermore, under our experimental setup, the training
time for all baselines as well as our method lies between 12-14 hours, ensuring a largely uniform training time for all.



15. Clarity on Training dataset

We use 605141800 images to train both the retrieval model and stroke-subset selector. In particular, first, we pre-train the
retrieval model on raster sketches. Next, we use the sketch-vector modality of the same set of sketches to train the stroke-
subset selector. It should be noted that while the retrieval model trained from raster sketches is unaware of stroke-specific
importance for retrieval, the stroke-subset selector intelligently manages to eliminate the noise/inconsistent sketch strokes.
Testing is done on the remaining 679+200 images which are never used in either stage of the training.

16. Comparison with soft-attention

In order to deal with partial sketches, one alternative is indeed to apply soft-spatial attention in raster-space, as used
in Triplet-Attn-HOLEF [47]. Through fusing Triplet-Attn-HOLEF with our Augment baseline, we devise a new baseline
Triplet-Attn-HOLEF+Augment, which is able to achieve Acc@1(Acc@5) of 34.6%(68.9%) on the ShoeV2 dataset. This is
slightly better than the Augment baseline but significantly falls behind our final results. This further verifies the necessity of
our stroke-subset selector to deal with the erroneous/noisy strokes that are inherent to the drawing process.

17. Limitations

Cross-dataset generalisation for the stroke-subset selector in particular is an intriguing research direction, which we intend
to cover in the future. Also, replacing the non-differentiable rasterization operation (sketch-vector to sketch-image) with a
differentiable approximated one would be an interesting direction to explore too. This would make the whole pipeline end-
to-end differentiable, so it can backpropagate the gradient calculated from triplet loss directly onto the stroke-subset selector
without needing any RL-based formulation, ultimately increasing stability and pace of training.
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