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Challenges in Ground Terrain Recognition

Dominant	Texture	Information Dominant	Shape	Information

Ground Terrain Recognition is a difficult task due to various
reasons.

The context information varies significantly over the regions of a
ground terrain image. Like some local regions posses significant
texture information, while shape information is more dominant at
some other parts.



Motivation

As most real-world ground terrain images show wide variations in
texture and shape information at different local regions in an
image, thus the classification of such realistic ground terrain
images requires a more local level modeling of texture and shape
information.



An Overview of our Solution

We propose a novel approach towards ground-terrain recognition
via modeling the Extent-of-Texture information to establish a
balance between the order-less texture and ordered-spatial
information locally.
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Modeling Extent-of-Texture (EoT) Information

Given an image I ∈ RH×W×3, a backbone CNN feature extractor
network G (·) takes I and outputs latent feature representation Z.
Thus,

Z = G (I; θG ) (1)

Patch-extraction is performed on Z ∈ R8×8×512 using a sliding
window mechanism where the window size and stride is chosen as
(3× 3) and 1 respectively. The patch-extraction operation
generates ψ = {ψi}i=k

i=1 , where ψi ∈ R3×3×512 and k is the number
of patches. Average pooling of ψ gives ψ∗ = {ψ∗

i }i=k
i=1 .



Modeling Extent-of-Texture (EoT) Information
(continued...)

Let X =
{
x1, x2, x3.......xk ,

}
, where xi denotes the central region of

the ψi patch e.g. xi = ψi [2; 2; :] and xi ∈ R1×1×512.

The cosine similarity between ψ∗ and X describes the order-less
texture information T , where T =

{
T1, T2, T3.......Tk

}
and Ti

denotes the order-less texture information of the i th patch.
Therefore,

ψ∗
i = AvgPool(ψi , 3) (2)

Ti =
ψ∗
i · xi

||ψ∗
i ||2 ||xi ||2

(3)

Ti =
Ti − Tmin

Tmax − Tmin
(4)



Modeling Extent-of-Texture (EoT) Information
(continued...)

A high value of T indicates the presence of greater extent of the
order-less texture information , whereas a small value of T
represents higher shape information.

The ordered shape information S, where S =
{
S1,S2,S3.......Sk

}
and Si denotes the ordered-spatial information of the i th patch.
Then,

Si = 1− Ti (5)



EoT Guided Inter-domain Message Passing

The EoT Guided Inter-domain Message Passing module is used for
sharing knowledge between texture and shape features to balance
out the order-less texture information with ordered-spatial
information.
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Results

Table: Comparison of Deep-TEN, baseline B1, B2, B3 and B4 with the
proposed methodology for single scale and multi scale training on
GTOS-mobile [1] dataset using a pre-trained ResNet-18 module as the
convolutional layer. Baseline B1 is similar to Deep Encoding Pooling
Network (DEP) by Xue [1].

Deep-TEN [2] B1 [1] B2 B3 B4 Proposed Method
Single Scale 74.22 76.07 77.81 78.55 78.93 80.39
Multi Scale 76.12 82.18 83.78 84.31 84.36 85.71



Results (continued...)

Table: Comparing Our method with several state-of-the-art methods on
Describable Textures Dataset (DTD) and Materials in Context Database
(MINC)

Method DTD [3] MINC-2500 [4]

FV-CNN [5] 72.3 63.1
Deep-TEN [2] 69.6 80.4

DEP [1] 73.2 82.0
Proposed Method 75.7 85.3



Conclusion

I we have proposed a novel approach towards ground-terrain
recognition via modeling the extent of texture information to
establish a balance between the order-less texture component
and ordered-spatial information locally.

I The driving idea of our architecture is the modeling of context
information locally.

I The proposed framework is simple and easy to implement.

I We demonstrate the effectiveness of our system by conducting
experiments on publicly available ground terrain datasets.
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Thank you
Questions?

Source Code is available at:
github.com/ShuvozitGhose/Ground-Terrain-EoT

github.com/ShuvozitGhose/Ground-Terrain-EoT

