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Abstract

Designing real and virtual garments is becoming ex-
tremely demanding with rapidly changing fashion trends
and increasing need for synthesizing realistically dressed
digital humans for various applications. However, tra-
ditionally designing real and virtual garments has been
time-consuming. Sketch based modeling aims to bring the
ease and immediacy of drawing to the 3D world thereby
motivating faster iterations. We propose a novel sketch-
based garment modeling framework that is specifically tar-
geted to synchronize with the iterative process of gar-
ment ideation, e.g., adding or removing details from dif-
ferent views in each iteration. At the core of our learning
based approach is a view-aware feature aggregation mod-
ule that fuses the features from the latest sketch with the
thus far aggregated features to effective refine the gener-
ated 3D shape. We evaluate our approach on a wide vari-
ety of garment types and iterative refinement scenarios. We
also provide comparisons to alternative feature aggregation
methods and demonstrate favorable results. The code is
available at https://github.com/pinakinathc/
multiviewsketch-garment.

1. Introduction
Being one of the most natural mediums for humans to

demonstrate ideas, sketch is widely used in design work-
flows. Specifically, fashion industry has a long tradition to
start a design process with a sketch, and eventually convert
it to 3D to demonstrate how it drapes over the body either
by using physical patterns or virtual draping [1]. However,
getting the 3D shape is not trivial and even more often the
designer needs to iterate between the ideation, i.e., sketch-
ing from various viewpoints, and the 3D draping stages un-
til the desired look is achieved. Our goal in this work is
to provide an interactive solution that can make this iter-
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Figure 1. Our proposed system supports iterative multi-view gar-
ment design. In this example, the user starts by sketching in an
arbitrary chosen view (1), and the garment geometry (2) is gen-
erated after the sketch. Next, the user rotates the reconstructed
garment to sketch from a different viewpoint (3), and changes the
design by augmenting it with a skirt (4). Exploring the design fur-
ther from a different viewpoint, the user adds the sleeves in the
back view (4). Our system efficiently updates the prediction, care-
fully matching it to the most recent view, while retaining details
sketched in earlier views: compare the collar shape in views (1)
and (8).

ative process more intuitive by mapping (multiple) input
sketches into a 3D model. We believe that a successful so-
lution should satisfy various properties: 1) View awareness:
Allowing the designer to model the 3D garment from arbi-
trary views (instead of predefined fixed viewpoints such as
frontal) offers an extra degree of freedom for the garment
ideation. 2) Iterative refinement from different views: A
single sketch may not capture all the geometric details (due
to invisible regions and the inevitable ambiguity of 3D to
2D projection). Hence, the designer may want to iteratively
update their design by providing different details from dif-
ferent viewpoints. 3) View-specific edits: When performing
iterative refinements, it is expected that the latest sketch to
be faithfully reflected in the 3D output, while keeping the
previous edits in the invisible regions not affected if possi-
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ble. For instance, while a newly added wrinkle in the front
view of the skirt is not expected to change the back, an in-
crease in the length of a sleeve results in a updating the 3D
shape globally.

While there exist previous approaches [38, 6, 5, 8] for
sketch based modeling, they do not satisfy the aforemen-
tioned properties of an iterative tool. To our knowledge,
handling view conditioned editing is an unexplored area
which we focus on in our work. At the core of our ap-
proach is a module to enforce view disentanglement in the
feature space extracted from input sketches. Specifically,
we propose a network that takes the sketch as input together
with a view direction. We warp the features extracted from
the sketch into a canonical space based on the viewpoint.
When fusing the canonical features from multiple views,
we use a binary mask which further encourages view dis-
entanglement. Instead of averaging features from differ-
ent views, we show that the binary mask helps to enforce
view specific changes more effectively. We train our net-
work on a dataset of garments composed of different parts
(e.g., sleeves, collars etc.) to simulate changes that can be
observed in a typical workflow (e.g., adding a sleeve from
one view point). Finally, we utilize an implicit represen-
tation based on winding numbers [27] to represent the 3D
geometry of the garments which we find to capture more
geometric details compared to other representations such as
occupancy fields.

We evaluate our method on a wide variety of garment
types and show that our method enables to design a 3D gar-
ment in an iterative manner by providing sketches from var-
ious viewpoints (see Figure 1). We also provide compar-
isons with alternative approaches and demonstrate the ef-
fectiveness of our view disentangled feature fusion strategy.

In summary, our main contributions include (i) a sketch
based garment modeling system that satisfies the needs
of an iterative garment ideation tool, (ii) a novel view-
aware feature aggregation strategy that faithfully reflects the
changes in the last sketch in the 3D garment output.

2. Related Work
Sketch-based 3D shape modeling In our work, we ex-
plore Sketch-Based Modeling (SBM) for garment ideation
and focus on multi-view iterative sketching. Since sketch-
ing is the most intuitive way of expressing a visual concept,
there is a large interest in SBM for 3D content creation. For
a detailed discussion, we refer the interested reader to sev-
eral state-of-the-art reports on SBM [38, 6, 5, 8].

Since our goal is to enable an interactive garment
ideation workflow, our primary requirement for such a
workflow is to be fast, responsive and intuitive. Therefore,
we follow the recent trend in SBM and leverage deep learn-
ing [36, 48, 33, 16, 47, 57, 55, 54, 23], which allows for fast
and robust shape inference. Majority of the existing works

focus on a single-view modeling [47, 23, 56] or assume that
multiple views are given simultaneously [36, 33, 57, 25].
The closets to our work is the work by Delanoy et al. [16]
who train a single-view CNN and an updater CNN to gener-
ate occupancy of a voxel grid from the sketch. The updater
network takes as input the concatenation of the encoding
of the current reconstruction and the embedding of the most
recent view. We show that this approach provides much less
control over the results compared to our method, as the net-
work tends to ‘forget’ what was drawn in earlier views. In
order to achieve a multi-view coherent solution, the updater
proposed by Delanoy et al. repeatedly loops over all avail-
able drawings. In contrast, our network produces coherent
results in a single pass, supports iterative design review, and
does not modify non-edited view-specific garment features.

Various 3D representations were considered in the con-
text of deep SBM, such as voxels [16], points clouds [55]
and implicit shape representations [23]. In our work, we for
the first time in the context of SBM use generalized winding
numbers [28, 3, 10] to represent 3D garments.

Sketch-based garment modeling Dedicated garment
sketch-based modeling systems often require users to draw
on top of a 2D view of a predefined 3D mannequin, which
provides additional context about the position of the drawn
strokes in 3D space [45, 44, 41, 14]. While our system can
potentially be extended to support drawing on top of a ref-
erence 3D body, this is not necessary and it enables free
sketching in its current form.

Dedicated strategies were developed for modeling folds
in garments [15, 30, 34, 20]. While our system captures
main folds as shown in Figure 1, we are primarily focused
on capturing large geometric features such as the appear-
ance of the entire garment, the shape of the collar region,
or the length and shape of the sleeves to help the ideation
stages of the design process. Previously, Wang et al. [49]
explored deep learning for garment modeling. Their method
brings sketches, 2D patterns and draped 3D garments into a
shared latent space. However, their model is garment tem-
plate specific and the workflow supports single sketch input
only. On the contrary, our framework is designed to support
a wide variety of garments, allowing artists to iterate over
their designs via multi-view sketching.

Image-based garment modeling Closely related to our
work is image-based garment modeling, which has become
popular in the last few years. The existing work [42, 2, 7]
targets single and multi-view reconstruction, but unlike our
work, assumes that the views are fully consistent. The
image-specific solution [2] uses a texture map as a bridge
between the image domain and the 3D shape domain, effec-
tively capturing normal changes along the garment surface.
However, such solutions cannot be applied to sketch input.



Several methods [53, 13, 29] rely on existence of specific
cloth templates, which limits the generalization of these ap-
proaches to arbitrary garments. The latter is essential for a
sketch-based garment ideation system. Since many of these
works are aimed at virtual try-on applications, garments are
often modeled with respect to a human body. Thus, a com-
mon approach is to represent garments as offsets from the
body mesh [4, 24, 37] which is limited to represent loose
garments. To overcome this limitation, Saito et al. [42]
use occupancy fields, an implicit geometry representation,
to predict the surface of a human from single or multiple
input images. Corona et al. [12] exploit unsigned distance
fields and propose to encode the distance of a 3D point rel-
ative to a set of point samples from a body template. After
experimenting with different representations, we have se-
lected winding numbers to represent the 3D shape. We ob-
serve that such representation provides better reconstruction
quality than alternative implicit shape representations, and
avoids the problem of reconstructing double surfaces, as is
the case for unsigned distance fields (see the supplementary
material).

Multi-view image-based 3D shape modeling Single and
multi-view image-based modeling is a popular research
topic in vision and graphics and more recently learning
based approaches have shown impressive results. For a de-
tailed overview, we refer the reader to the respective state-
of-the-art reports [21, 51]. Here, we discuss a few repre-
sentative approaches to demonstrate why they are not di-
rectly applicable to our problem. A common approach for
learning-based multi-view reconstruction is to employ an
RNN based architecture [31] to fuse information across im-
ages. However, such approaches do not allow for view-
disentanglement, and RNNs tend to ‘forget’ the important
features from early inputs. Another approach is to use
max pooling [26] or average pooling [39] to fuse multi-
view features. However, these are not suitable for in-
consistent views, which is an important requirement for a
system with iterative design refinement, as shown in Fig-
ure 1. A more similar idea is to use attention-based fusion
[52, 50, 46, 58]. However, these methods are tailored to
handle order-invariance for the input views. In contrast, in
our setting the order of the sketches is critical since the ge-
ometry depicted in the last sketch should result in expected
updates. The closest to our work is the method [52], which
combines views according to the learned attention vectors.
In contrast to their work, we propose quantized attention
vectors additionally conditioned on camera directions. This
enables view-disentanglement required for our system. In
our experiments, we provide a detailed comparison to these
previous approaches and demonstrate the effectiveness of
our method.

3. Method

Our method takes a single input sketch at a time and gen-
erates the corresponding 3D garment shape either by pro-
viding an initial 3D prediction (in case of the first sketch
input) or updating the existing 3D shape prediction. Specif-
ically, we extract features from the input sketch which are
then decoded for 3D prediction. At the core of our method
is a feature aggregation mechanism that fuses the features
from the last sketch with the aggregated features thus far
using a view-aware binary weighting mechanism. We show
that this approach faithfully reflects the view-specific edits
provided in the last sketch in the generated 3D output. Next,
we first describe the overall network architecture (Figure 2)
for a single input sketch, and then explain how we perform
feature aggregation across a sequence of sketches.

3.1. Architecture

3.1.1 View-aware sketch encoder

In order to effectively aggregate information across
sketches drawn from different viewpoints, we aim to map
each sketch to a canonical feature space. We achieve this
goal by first obtaining view specific features from the input
sketch by using an image encoder pre-trained on a large col-
lection of images. Next, we propose a simple network mod-
ule, AlignNet to bring such features to a canonical space.

Specifically, starting from a sketch S, we extract features
f ∈ R512 using a pretrained image encoder. We adopt the
VGG-16 [43] network pre-trained on ImageNet1. We dis-
card the top layers starting with the global average pooling
and apply adaptive pooling to obtain a 512 × 1 × 1 feature
vector, which we then flatten to obtain f ∈ R512.

The AlignNet takes as input the feature vector f and a
positional encoding of a view ϕ to generate a canonical-
space feature along with blending weights:

falign, α = AlignNet(f, ϕ), (1)

where falign ∈ R512. The blending weights α ∈ R512 in-
dicate which channels in falign are informative according
to the view direction ϕ. In case of sequential sketch inputs,
α is utilized to fuse falign with the aggregated features ob-
tained in the previous step.

In AlignNet, the concatenated features of f and ϕ are
first passed through two linear layers, each followed by
a ReLU(·) activation function to obtain a feature vector
x ∈ R1024. We then split this vector into two: x1:512

and x512:1024, which are passed through two separate sub-
networks to obtain falign ∈ R512 and α ∈ R512, respec-
tively. Each sub-network consists of a linear layer followed
by a ReLU(·), and a second linear layer.

1https://www.image-net.org/

https://www.image-net.org/
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Figure 2. Starting from the input sketch and the corresponding view direction ϕi, we extract image feature f i and align it to canonical
domain f i

align. Blending vector α is produced simultaneously to fuse the aligned feature with the feature obtained from the last step. For
a given spatial location X , we concatenate it with the fused feature f̃ i

align and pass through our decoder to predict the winding number at
position X . The final 3D garment mesh will be extracted based on the densely sampled winding number field.

In our implementation, without loss of generality, we as-
sume that the elevation angle is fixed and we vary only the
camera azimuth angle. Therefore, in our implementation,
the view encoding ϕ represents the camera azimuth angle.

3.1.2 View classification

To encourage the learned blending vector α ∈ R512 to pre-
serve view information, we introduce a classifier Cview dur-
ing training which takes α as input and classifies the input
view.

To enable view-aware feature extraction, we would like
our weighting vector α to be binary so that the features ex-
tracted from a particular view affect only certain dimensions
of the feature vector. Strictly enforcing binary values while
still being able to back-propagate is not straightforward. We
propose to use a HardShrink activation [40] with λ = 1 be-
fore providing α to Cview. This step enables us to easily
obtain a binary counterpart of α, which we use for multi-
view feature blending in Section 3.2.

Our view classifier network Cview consists of a lin-
ear layer with 512 output neurons, batch normalisation,
ReLU(·), and a linear layer that reduces the number of
output neurons to 360, followed by a softmax(·) activation
function to predict a classification probability.

3.1.3 Sketch decoder

We represent a 3D shape using generalized winding num-
bers [28, 3, 10]. Our decoder network takes in the concate-
nation of the spatial location X ∈ R3 and the view encoded
in the canonical feature space f̃align, and predicts a winding
number WX .

The decoder consists of 8 linear layers followed by a
ReLU(·), each with hidden dimension of 512, except for
the last layer, which predicts a scalar winding number.

During training, we sample 8, 192 randomly selected lo-
cations inside a pre-computed grid of resolution 128×128×
128. During inference, we regularly sample the 3D grid and
generate the winding number field accordingly. Marching
cubes algorithm [35] is applied to the numerical gradient of
the winding number field to recover the 3D geometry sur-
face. In our experiments, we adopt a threshold equal to 0.3.

3.2. Feature fusion

When the user provides a new sketch for an existing
design, the canonical feature from the latest sketch f i

align

needs to be merged with the features obtained in the last
step f̃ i−1

align. We desire the blending weights to be binary so
that they enable the relevant channels of the feature vector
to be directly affected by the latest sketch. Hence, given
the predicted αi by AlignNet, we convert αi into a strictly
binary signal, αi

∗, as:

αi
∗ =

{
1 if αi > λ

0 if otherwise
(2)

Then our feature blending is

f̃ i
align = αi

∗ · f i
align + (1− αi

∗) · f̃ i−1
align. (3)

Our binary activation αi
∗ ensures that the learned feature

will fully respect the latest sketch input Si in the channels
visible from view ϕi. This also resolves the issue of repet-
itive input, i.e., if Si and Si−1 is similar on the overlapped
region (if any), our feature will have consistent value on the
corresponding channels.

3.3. Loss

We train our network with the two loss terms.



Figure 3. Example garment variations created by adding or remov-
ing garment parts. Using such variations for training allows us to
meet the requirement of iterative refinement of a garment concept.

View classification loss A typical cross entropy classifi-
cation loss is used to train our view classifier Cview. Specif-
ically, we have:

Lvc = −ϕi log[Cview(α
i)] (4)

Geometry loss We apply L1 loss on the predicted wind-
ing number for geometry reconstruction.

Lgeo = |w(X)−Decoder(f̃ i
align, X)|1 (5)

where w(X) is the winding number at location X for the
ground truth geometry. We note that Lgeo is not back-
propagated to the α prediction branch of AlignNet due to
the strict binarization described in Section 3.2. Hence, Lvc

is crucial to train blending weights α.

3.4. Implementation details

Our model is implemented in PyTorch using 11GB
Nvidia RTX 2080-Ti GPUs. In each iteration, we sample
3 random sketch views for each garment in a batch. Our
model is trained using Adam Optimiser [32] for 1 million
iterations with batch size 8. Typically it takes 96 hours for
the model to converge.

4. Experiments
Dataset We use the dataset provided by Chen et al. [9]
which contains 240 unique garment models, containing top,
bottom and full body garments. Each garment consists of
several components, such as collar, sleeve, etc. We exploit
this property to obtain a larger dataset by removing com-
ponents as shown in Figure 3 to simulate rich variety of
garment designs, which is in line with our goal of support-
ing iterative design evolution. In total, we obtain 2,158 3D
garment models. We split them into 1,235 garment models
used for training and 923 models used for testing. The split-
ting is done in such a way that the test set does not contain

any variant of the garment from the training set. Follow-
ing [10], we compute winding numbers for each garment
model variant on a regular grid with spatial resolution of
128× 128× 128.
NPR We use Non-Photorealistic Rendering (NPR) to
generate the dataset of garment sketches. We render sil-
houette and open edge lines into 224 × 224 sketch views
with Blender Freestyle [11], using an orthographic projec-
tion. The camera points at the center of the garment. We fix
the camera elevation angle to 10◦ and render garment views
by orbiting around the garment with 1◦ step. In total, we
generate 360 sketch views for each garment.
Evaluation metrics We evaluate the quality of 3D re-
constructions using the ubiquitously used Chamfer distance
(CD) [19] metric. We uniformly sample 5,000 points from
ground-truth and reconstructed 3D shapes and compute the
distance between them. A smaller CD value indicates more
accurate reconstruction.

To evaluate view disentanglement, we also compute
view-based metrics. We render normal maps of a 3D ge-
ometry from the specified viewpoints. Next, we evaluate
the structural similarity index (SSIM) between the predicted
and ground-truth shape projection. A larger SSIM value in-
dicates more accurate reconstruction.

4.1. Garment ideation workflow

In Figures 1 and 4, we demonstrate the example garment
ideation workflow scenarios that our system enables. In par-
ticular, the user can start sketching from an arbitrary view-
point and the network will generate a plausible 3D garment
that matches the sketch from a given viewpoint. In each
new sketch view, the user may choose to either (i) add addi-
tional details to refine the current prediction, or (ii) update
the garment design by adding or removing some details, for
instance, by adding a ‘skirt’ or ‘sleeve’. Our system can up-
date the prediction from the current view without modifying
the prediction for the invisible regions that were sketched in
the previous views. For instance, as is shown in Figure 4
(b), removing a skirt in the back view, does not affect the
shape of a collar in the front view. Moreover, if the applied
edit is global, such as removing a skirt in this example, our
model updates this information globally while retaining the
details that were sketched previously but are not visible in
the current view.

4.2. Quantitative evaluation

4.2.1 Baselines

Due to the lack of methods that focus on iterative sketch-
based modeling, we create three baselines adopting multi-
view image reconstruction methods and the approach used
by Delanoy et al. [17].

Namely, as the first baseline, B-RNN, we adapt the
RNN-based fusion method [31]. Each view is encoded with



View 0°
(front)

View -90°
(side)

Sketch input
View 180°

(back)

3D predictions

Vi
ew

 0
°

Vi
ew

 -1
50

°

(a)
View 0°
(front)

View 0°
(front)

Sketch input
View 180°

(back)

3D predictions

Vi
ew

 0
°

Vi
ew

 -1
50

°

(b)
View 0°
(front)

View 180°
(back)

Sketch input
View 0°
(front)

3D predictions

Vi
ew

 0
°

Vi
ew

 -1
50

°

(c)

Figure 4. Garment design iterative editing. (a) The user sketches in the front view, then removes a sleeve in the back view, and then adds
it back in the side view. (b) The user sketches a dress in the front view, then removes a skirt in the back view, and then removes sleeves in
the front view. (c) The user sketches a dress in the front view, then updates the collar region in the same view, and then removes sleeves
in the back view. Please note how all examples demonstrate that only information updated in the most recent view is updated in the 3D
predictions.

our sketch encoder to obtain falign, note that we do not pre-
dict any weighting vector in this case. In our implementa-
tion, we use a single layer RNN with hidden size of 512.

B-Concat follows the startegy proposed by Delanoy et
al. [17]. The fused features from the last step f̃ i−1

align ∈ R512

are concatenated with the canonical feature from the latest
sketch f i

align ∈ R512 and are passed through a linear layer
to obtain a new fused feature vector f̃ i

align.
B-Cont-α use AlignNet to predict features in the canon-

ical space and continuous weight vectors. However, since
continuous α is able to pass the gradient during training, the
view classifier is not necessary in this case and the network
is trained only with the geometry loss Lgeo. Unlike Equa-
tion (3), we perform feature fusion using softmax activation
on continuous weighting vectors:

αi
s = softmax(αi)

f̃ i
align = αi

s · f i
align + (1− αi

s) · f̃ i−1
align

(6)

4.2.2 Single-View Reconstruction

First, we show that our model produces plausible predic-
tions for single view input and is robust to different view-
points. Some reconstruction results are shown in Figures 4
and 5. In Table 1, we evaluate single-view reconstruction
accuracy from several distinctive viewpoints: 0◦, 30◦, 60◦,
90◦ and 180◦. It can be observed that the highest recon-
struction accuracy is achieved from the 30◦ and 60◦ views,
which are often referred to as the most informative views
in the sketching literature [18, 22]. Side views contain little
information due to foreshortening. Similarly the back view
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Figure 5. Multi-view Reconstruction: We show the reconstruction
result when iteratively feeding 2D sketches from different view-
points. Note, the network is capable of predicting a visually plau-
sible geometry given a single sketch. Adding multiple sketches
makes the underlying geometry more accurate.

lacks details that are typically located in the frontal part of
a garment.

Table 1. Chamfer distance values for single view prediction results
for different viewpoints.

Method Sketch view angle
Front
0◦

...
30◦

...
60◦

Side
90◦

Back
180◦

Proposed 0.288 0.244 0.357 0.855 0.824

4.2.3 Multi-View Reconstruction

Although single-view reconstruction generates plausible
geometry matching the input view, garment ideation might



Table 2. Quantitative evaluation using the Chamfer distance (in
10−2) for multi-view reconstruction. It can be seen that adding
more views reduces the Chamfer distance for all feature fusion
methods. Please see Section 4.2.3 for a detailed discussion.

1st Sketch
1-view

2nd Sketch
2-views

3rd Sketch
3-views

B-RNN 0.308 0.176 0.134
B-Concat 0.305 0.169 0.135
B-Cont-α 0.284 0.159 0.125
Proposed 0.288 0.160 0.125

require concept exploration and refinement from different
viewpoints [17, 49].

Consistent geometry When multiple views are sketched
to provide more details on a consistent design, adding more
sketches from different viewpoints should result in more ac-
curate geometry. Figure 5 demonstrates this behaviour: (a)
the shape of the collar is refined and overall shape prediction
is more accurate, and (b) the prediction of the sleeve is get-
ting more accurate in the side view. We evaluate this quanti-
tatively in Table 2, measuring Chamfer distance between the
prediction results and the ground-truth when progressively
more views are used. Indeed, for all fusion strategies the
Chamfer distance reduces when additional views that are
consistent in terms of geometric details are provided. More-
over, it can be observed that ours and B-Cont-α fusion ap-
proaches achieve the best performance. Our binary weight-
ing strategy performs just slightly worse than B-Cont-α, but
allows for the view-disentanglement that we demonstrate in
the next section.

View disentanglement Figure 5 (b) shows that sketch-
ing in the side view does not change the shape of the col-
lar sketched in the first view, and not visible in the side
view. We quantitatively evaluate view-disentanglement in
Table 3. First, we provide a sketch obtained from the front
view to the network followed by a sketch obtained from the
back view in the second iteration. We evaluate the SSIM
(Structure Similarity Index) difference between the normal
maps of the prediction and ground-truth 3D garments from
the front and back views. It can be observed that our strat-
egy is the most efficient in preserving the information from
the first view and updating the information given the most
recent view. With our fusion strategy, the reconstruction
quality of the front view almost does not change, while the
back view is improved significantly. This shows that our de-
sign meets the requirements on updating the geometry only
with respect to what is visible in the most recent view.

An important aspect of a convenient system for garment
ideation is an instant update of a 3D geometry to reflect the
latest changes in the user sketch. Figure 4 demonstrates a

Table 3. Quantitative evaluation of view-disentanglement. A
sketch drawn from the Front View (Inp. View-1 (FV)) is given
to the network followed by a sketch drawn from the Back View
(Inp. View-2 (BV)) in the second iteration. We measure the SSIM
of the normal maps from the front (GT-FV) and back view (GT-
BV) between the predicted and ground-truth meshes.

Inp. View-1 (FV) Inp. View-2 (BV)
GT-FV GT-BV ∆ GT-FV ∆ GT-BV

B-RNN 0.9722 0.9724 -0.0003 0.0001
B-Concat 0.9725 0.9724 -0.0008 0.0003
B-Cont-α 0.9728 0.9730 -0.0007 0.0007
Proposed 0.9728 0.9730 -0.0001 0.0013

Table 4. Quantitative evaluation using Chamfer Distance to mea-
sure the adaptability to the latest sketch.

No-Sleeve One-Sleeve Both-Sleeves
B-RNN 0.308 0.411 0.358

B-Concat 0.305 0.372 0.348
B-Cont-α 0.284 0.335 0.302
Proposed 0.288 0.292 0.289

number of application scenarios. In Table 4, we perform a
quantitative evaluation of our approach. We select from our
test set all garments that have sleeves (47 garments). At first
iteration, we predict a 3D shape from the front view with
both sleeves sketched. At second iteration, we predict a 3D
shape from the front view with only one sleeve sketched.
Finally, at the third iteration, we predict a 3D shape when
again both sleeves are sketched. In each case we update the
ground-truth geometry to reflect the changes in the sketch.
We compute the Chamfer distance at each iteration between
the predicted and ground-truth geometries. Table 4 shows
that our fusion strategy is by far the most efficient in up-
dating 3D geometry with respect to the most recent sketch.
Figure 4 shows that our system supports diverse user edits
and provides a good preview of the envisioned 3D geom-
etry. We provide additional qualitative comparisons in the
supplementary material.

4.2.4 Latent space analysis

In this section, we analyze our latent space. The
AlignNet(·) module used in our proposed method pre-
dicts the encoding of the input sketch into the canonical
latent space falign and a weighting vector α that we use
to update the prediction given the most recent view.

Feature vectors in the canonical space First, we an-
alyze the ability of our network to ‘align’ feature vec-
tors obtained from different sketch views of the same gar-
ment. We visualize the t-SNE plot of falign in Figure 6
(a). We represent the encodings obtained from different
views of the same garment with the same designated color.
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Figure 6. tSNE plot visualising falign and α from 5-garments
with 6-views (0◦, 60◦, 120◦, 180◦, 240◦, 300◦) from each gar-
ment. Multiple views from the same garment are depicted using
the same color and different views from each garment are depicted
using different marker shapes.

Figure 7. We select a subset of sketch viewpoints ϕ uniformly dis-
tributed around 3D garments. For each weighting vector α∗, we
compute the percentage of vector components that are equal to 1.
The figure shows the average percentage across different garments
for each selected viewpoint.

To obtain the plot we randomly select 5 garments. For
each garment we select six sketches from six viewpoints:
(0◦, 60◦, 120◦, 180◦, 240◦, 300◦). The encodings obtained
from each specific view is shown with a distinctive shape.
It can be observed that falign from different viewpoints of
the same garment (having the same color) cluster together,
as shown in Figure 6 (a). Such alignment of feature vectors
is crucial for efficient feature fusion.

Weighting vectors We visualize the t-SNE plot of α in
Figure 6 (b). It can be seen that weighting vectors α esti-
mated for different garments but same viewpoints (having
the same marker shape) cluster together. Moreover, we ob-
serve that view 0◦ and view 180◦ are encoded closer to-
gether than remaining views. This is intuitive as for some
garments front and back views can be quite visually sim-
ilar due to symmetry. This observation motivates the use
of the positional encoding ϕ as an additional input to the
AlignNet(·) module.

In addition, our representation of weighting vector in its
binary form α∗ allows us to study how informative each
viewpoint is. In other words, we analyze if the form of

the weighting vectors for different views can bring some
insights into which views contain more cues about 3D gar-
ment geometry. In Figure 7, we select a subset of sketch
viewpoints uniformly distributed around 3D garments, and
count how many components of predicted α∗, on average,
are equal to 1 per each view, across different garments. It
can be observed that back view can be considered the least
informative, which can be explained by the lack of details in
the typical garment in our training dataset. Similarly, side
views are also considered less informative by our network,
which is also intuitive as these views are the most foreshort-
ened. As many garments are symmetric, it can be observed
that the learned weighting vectors exhibit symmetry with
respect to the front view.

5. Limitations and future work
There are various avenues for future improvements. To

leverage the challenging target domain of garments that
contain thin open surfaces we adopt winding number shape
representation. However, it was observed by [10] that un-
signed distance fields might be better in capturing small de-
tails even though they result in thick double surface recon-
structions. In the future, we would like to explore different
representations to allow for accurate reconstruction of small
details. Another limitations of our system is the need to cre-
ate a full sketch from every new viewpoint. In future work,
we would also like to extend our method to support spatial
disentanglement to enable local edits in each view.

6. Conclusion
In our work, we for the first time consider the problem

of iterative multi-view sketch-based garment ideation. We
identified the desirable properties of the system that can
support iterative garment design workflow. Namely, such a
system should be able to (i) produce a plausible prediction
from a single view input, (ii) efficiently aggregate the infor-
mation from multi-view sketch inputs, and (iii) update the
design with respect to the most recent view, while preserv-
ing the details which were sketched in the previous views
and are not visible in the current view. We take inspira-
tion from the literate on multi-view image-based modeling
and propose an architecture that learns a disentangled la-
tent space. We achieve this disentanglement by learning
binary weighting vectors that indicate which part of the
sketch view feature vector can be reliably predicted from
a given input view. We demonstrate the efficiency of our
system across various design scenarios and garment types.
We consider several alternative designs of multi-view fea-
ture fusion strategies and demonstrate the superiority of our
design. We believe that our system will be of high interest
to a design community, where iteration between sketching
and 3D modeling is one of the most time consuming steps.
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