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Abstract

In this paper, we leverage CLIP for zero-shot sketch
based image retrieval (ZS-SBIR). We are largely inspired by
recent advances on foundation models and the unparalleled
generalisation ability they seem to offer, but for the first time
tailor it to benefit the sketch community. We put forward
novel designs on how best to achieve this synergy, for both
the category setting and the fine-grained setting (“all”). At
the very core of our solution is a prompt learning setup.
First we show just via factoring in sketch-specific prompts,
we already have a category-level ZS-SBIR system that over-
shoots all prior arts, by a large margin (24.8%) – a great
testimony on studying the CLIP and ZS-SBIR synergy. Mov-
ing onto the fine-grained setup is however trickier, and re-
quires a deeper dive into this synergy. For that, we come up
with two specific designs to tackle the fine-grained match-
ing nature of the problem: (i) an additional regularisa-
tion loss to ensure the relative separation between sketches
and photos is uniform across categories, which is not the
case for the gold standard standalone triplet loss, and
(ii) a clever patch shuffling technique to help establishing
instance-level structural correspondences between sketch-
photo pairs. With these designs, we again observe signifi-
cant performance gains in the region of 26.9% over previ-
ous state-of-the-art. The take-home message, if any, is the
proposed CLIP and prompt learning paradigm carries great
promise in tackling other sketch-related tasks (not limited
to ZS-SBIR) where data scarcity remains a great challenge.
Project page: https://aneeshan95.github.io/Sketch LVM/

1. Introduction
Late research on sketch-based image retrieval (SBIR)

[49, 51, 52] had fixated on the zero-shot setup, i.e., zero-
shot SBIR (ZS-SBIR) [16, 18, 69]. This shift had become
inevitable because of data-scarcity problem plaguing the
sketch community [5, 7, 32] – there are just not enough
sketches to train a general-purpose SBIR model. It fol-
lows that the key behind a successful ZS-SBIR model lies
with how best it conducts semantic transfer cross object

Figure 1. Against existing (left) ZS-SBIR methods, we adapt CLIP
model for ZS-SBIR (middle), and extend to a more practical yet
challenging setup of FG-ZS-SBIR (right), via a novel prompt-
based design. Our model surpasses prior arts by a high margin.

categories and between sketch-photo modalities. Despite
great strides made elsewhere on the general zero-shot lit-
erature [61, 67, 76] however, semantic transfer [47] for ZS-
SBIR had remained rather rudimentary, mostly using stan-
dard word embeddings directly [16, 18, 74] or indirectly
[37, 63, 66].

In this paper, we fast track ZS-SBIR research to be
aligned with the status quo of the zero-shot literature, and
for the first time, propose a synergy between foundation
models like CLIP [46] and the cross-modal problem of ZS-
SBIR. And to demonstrate the effectiveness of this syn-
ergy, we not only tackle the conventional category-level
ZS-SBIR, but a new and more challenging fine-grained
instance-level [44] ZS-SBIR as well.

Our motivation behind this synergy of CLIP and ZS-
SBIR is no different to the many latest research adapting
CLIP to vision-language pre-training [22], image and ac-
tion recognition [47, 67] and especially on zero-shot tasks
[30, 39, 61, 76] – CLIP exhibits a highly enriched seman-
tic latent space, and already encapsulates knowledge across
a myriad of cross-modal data. As for ZS-SBIR, CLIP is
therefore almost a perfect match, as (i) it already provides
a rich semantic space to conduct category transfer, and (ii)
it has an unparalleled understanding on multi-modal data,
which SBIR dictates.

At the very heart of our answer to this synergy is that
of prompt learning [29], that involves learning a set of con-
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tinuous vectors injected into CLIP’s encoder. This enables
CLIP to adapt to downstream tasks while preserving its gen-
eralisability – a theme that we follow in our CLIP-adaption
to ZS-SBIR (Fig. 1). More specifically, we first design
two sets of visual prompts, one for each modality (sketch,
photo). They are both injected into the initial layer insider
the transformer of CLIP for training. While keeping the
rest of CLIP frozen, these two prompts are trained over
the gold standard triplet loss paradigm [70], on extracted
sketch-photo features. Motivated by the efficacy of train-
ing batch normalisation for image recognition [21], we ad-
ditionally fine-tune a small subset of trainable parameters
of every Layer Normalisation (LN) layer for additional per-
formance gain. Furthermore, to enhance cross-category se-
mantic transfer, we also resort to CLIP’s text encoder fur-
ther cultivating its zero-shot potential. In particular, in ad-
dition to the said visual prompts onto the CLIP’s image en-
coder, we use handcrafted text prompts via templates like
‘photo of a [category]’ to its text encoder, during training.

The new fine-grained setting [13, 44] is however more
tricky. Unlike the previous category-level setup, it poses
two additional challenges (i) relative feature-distances be-
tween sketch-photo pairs across categories are non-uniform,
which is reflected in the varying triplet-loss margin [70]
across categories at training [8], and (ii) apart from semantic
consistency, fine-grained ZS-SBIR requires instance-level
matching to be conducted [44], which dictates additional
constraints such as structural correspondences.

It follows that for the first challenge, we propose a new
regularisation term that aims at making the relative sketch-
photo feature-distances uniform across categories, such that
a single (global) margin parameter works across all of them.
Specifically, taking the distribution of relative distances for
all sketch-positive-negative hard-triplets [70] in a category,
we aim to minimise the KL-divergence [40] between every
pair of distributions, which trains the model towards mak-
ing such relative sketch-photo distances uniform across cat-
egories. For the latter, we propose a clever patch shuffling
technique, where equally divided patches of a sketch and
its corresponding photo (n×n) are first shuffled following
a random permutation order of patches. We then advocate
that a shuffled sketch should be closer to a shuffled photo
having the same permutation order, but far from that of a
different permutation. Training this permutation-invariance
imparts a broad notion of structural correspondences, thus
helping in fine-grained understanding.

Summing up: (i) We for the first time adapt CLIP for
ZS-SBIR, (ii) We propose a novel prompt learning setup
to facilitate the synergy between the two, (iii) We address
both the conventional ZS-SBIR setting, and a new and more
challenging fine-grained ZS-SBIR problem, (iv) We intro-
duce a regularisation term and a clever patch shuffling tech-
nique to address the fine-grained challenges. With our

CLIP-adapted model surpassing all prior arts by a large
margin (Fig. 1), we hope to have shed some light to the
sketch community on benefits such a synergy between foun-
dation models and sketch-related tasks can bring.

2. Related Work
Category-level SBIR: Given a query-sketch, SBIR aims
at fetching category-specific photos from a gallery of multi-
category photos. Recent deep-frameworks aim to learn a
joint sketch-photo manifold via a feature extractor [14, 16,
68, 68] over a triplet-ranking objective [70]. Towards prac-
ticality of unseen test-time classes, Zero-Shot SBIR (ZS-
SBIR) was explored for cross-category generalisation [16,
69], and enhanced via test-time training [50]. Others ex-
plored binary hash-codes [35, 73] for computational ease.
Sketch however specializing in modelling fine-grained de-
tails, geared research towards Fine-Grained SBIR.
Fine-grained SBIR: FG-SBIR aims at retrieving one
instance from a gallery of same-category images based
on a query-sketch. Introduced as a deep triplet-ranking
based siamese network [70] for learning a joint sketch-
photo manifold, FG-SBIR was improvised via attention-
based modules with a higher order retrieval loss [60], tex-
tual tags [12, 59], hybrid cross-domain generation [43], hi-
erarchical co-attention [51] and reinforcement learning [9].
Furthermore, sketch-traits like style-diversity [52], data-
scarcity [5] and redundancy of sketch-strokes [6] were ad-
dressed in favor of retrieval. Towards generalising to novel
classes, while [42] modelled a universal manifold of proto-
typical visual sketch traits embedding sketch and photo, [8]
adapted to new classes via some supporting sketch-photo
pairs. In this paper, we aim to address the problem of zero-
shot cross-category FG-SBIR, leveraging the zero-shot po-
tential of a foundation model like CLIP [46].
Zero-Shot SBIR: This aims at generalising knowledge
learned from seen training classes to unseen testing cate-
gories. Yelamarthi et al. [69] introduced ZS-SBIR, to re-
duce sketch-photo domain gap by approximating photo fea-
tures from sketches via image-to-image translation. While,
[18] aligned sketch, photo and semantic representations via
adversarial training, [16] minimised sketch-photo domain
gap over a gradient reversal layer. Improvising further,
others used graph convolution networks [74], or distilled
contrastive relationships [63] in a student from ImageNet-
pretrained teacher, coupled skecth/photo encoders with
shared conv layers and independent batchnorm-layer [65],
a shared ViT [62] to minimise domain gap, or employed
prototype-based selective knowledge distillation [66] on
learned correlation matrix, and very recently introduced a
test-time training paradigm [50] via reconstruction on test-
set sketches, adapting to the test set distribution. Seman-
tic transfer for ZS-SBIR however was mostly limited to
using word embeddings directly [18, 65, 74] or indirectly
[37,63,66]. Furthermore, FG-ZS-SBIR being non-trivial re-



mains to be explored. In this paper, we thus take to adapting
CLIP to exploit its high generalisability for semantic trans-
fer and exploring its zero-shot potential for FG-ZS-SBIR.
CLIP in Vision Tasks: Contrastive Language-Image
Pre-training (CLIP) [46] trains on cross-modal data, ben-
efiting both from rich semantic textual information [47]
and large scale availability of images (∼ 400M image-
text pairs) for training. Unlike traditional representations
on discretized labels, CLIP represents images and text in
the same embedding space [47], thus enabling generaliz-
ability in downstream tasks with no labels (zero-shot) [75]
or a few annotations (few-shot) [76] by generating classi-
fication weights from text encodings. Efficiently adapting
CLIP for downstream tasks to exploit it’s zero shot poten-
tial has been investigated using Prompt engineering from
NLP literature [36]. Such common extensions include re-
trieval [4], image generation [11], continual learning [61],
object detection, few-shot recognition [22], semantic seg-
mentation [47], etc. Others leveraged CLIP’s image/text
encoders with StyleGAN [45] to enable intuitive text-based
semantic image manipulation [1]. In our work we adapt
CLIP for zero-shot FG-SBIR in a cross-category setting.
Prompt Learning for Vision Tasks: Originating from
NLP domain, prompting [10] imparts context to the model
regarding the task at hand, thus utilising the knowledge
base of large-scale pretrained text models like GPT and
BERT to benefit downstream tasks. This involves con-
structing a task specific template (e.g., ‘The movie was
[MASK]’), and label words (e.g. ‘good/bad’) to fill
it up. Domain-expertise being necessary for hand-crafted
prompt-engineering, urged the need for prompt tuning in
recent works [29], which entails modelling the prompt as
task-specific learnable continuous vectors that are directly
optimised via gradient descent during fine-tuning. Learn-
ing context vectors for prompting has also taken root in the
vision community [3], with greater emphasis on prompt-
ing large scale vision language models [75] or visual fea-
ture extractors (e.g. ViT [29]). Unlike previous attempts at
prompt learning [29, 76], in context of FG-SBIR, we focus
on learning a single prompt for sketch and photo branches
which when used with CLIP, would generalise on to unseen
novel classes by leveraging the zero-shot potential of CLIP
for multi-category FG-ZS-SBIR.

3. Preliminaries
Overview of CLIP: Contrastive Language-Image Pre-
training or CLIP [46], widely popular for open-set visual
understanding tasks, consists of two separate encoders, one
for image and another one for text. The image encoder
(V) uses either ResNet-50 [26] or a Vision Transformer
(ViT) [17], where an input image (p ∈ RH×W×3) is di-
vided into m fixed-size patches and embedded as E0 =
{ej0}mj=1; e

j
0 ∈ Rdp . Similar to BERT’s [CLASS] token, a

learnable class token ct0 ∈ Rdp is appended, and the resultant

matrix [E0, c
v
0] ∈ R(m+1)×d is passed through transformer

layers, followed by a feature projection layer on class-token
feature to obtain the final visual feature fp = V(p) ∈ Rd
in joint vision-language embedding space. Similarly, us-
ing a vocab-size of 49, 152, the text encoder T first con-
verts a sentence with n words (including punctuation) to
word embeddings as W0 = {wj

0}nj=1 ;wj
0 ∈ Rdt and ap-

pends a learnable class token ct0 ∈ Rdt to form the input
feature matrix [W0, c

t
0] ∈ R(n+1)×dt representing knowl-

edge of the sentence (S), which is passed via a trans-
former to extract textual feature ft = T(S). The model is
trained via a contrastive loss [46] maximising cosine simi-
larity for matched text-photo pairs while minimising it for
all other unmatched pairs. During downstream tasks like
classification [46], textual prompts like ‘a photo of a
[category]’ (from a list ofK categories) are fed to T to
obtain category-specific text features (ft) and calculate the
prediction probability for input photo feature (fp) as:

P(y|p) = exp(sim(fp, f
y
t )/τ)∑K

i=1 exp(sim(fp, f
i
t )/τ)

(1)

Prompt Learning: Following NLP literature [10],
prompt learning has been adopted on foundation models
like CLIP [75] or large-pretrained Vision Transformers [29]
to benefit downstream tasks. Unlike previous fine-tuning
based methods [44] that entirely updated weights of pre-
trained models on downstream task datasets, prompt learn-
ing keeps weights of foundation models frozen to avoid
deploying separate copy of large models for individual
tasks besides preserving pre-learned generalizable knowl-
edge. For a visual transformer backbone, concatenated
patch-features and class tokens ([E0, c

v
0] ∈ R(m+1)×dp ),

appended with a set of K learnable prompt vectors vp

= {vi}Ki=1; vi ∈ Rdp for photo p, as [E0, c
v
0,v

p] ∈
R(m+1+K)×dp , and passed via the transformer to obtain
f̂p = V(p,vp). Keeping the entire model fixed, vp is fine-
tuned on the task-specific dataset, adapting the foundation
model to the task at hand. Variations of prompt learning
include, shallow vs deep prompt [29], based on the layers
at which prompts are inserted. Here, we use simple shal-
low prompt that is inserted only at the first layer along-with
patch embeddings, which empirically remains optimal and
easy to reproduce.

4. CLIP for Zero-Shot Category-level SBIR
Baseline Categorical SBIR: Given a query-sketch (s)
from any category, categorical SBIR [50] aims to retrieve
a photo of the same category, from a gallery (G) hold-
ing photos from multiple (Nc) categories G = {pji}

Mi
i=1|

Nc
j=1,

where ith class has Mi number of photos. Formally, an em-
bedding (separate for sketch and photo) function F(·) :
RH×W×3 → Rd, usually represented by an ImageNet
[33]-pretrained VGG-16 [58], is trained to extract a d-
dimensional feature from an input image (sketch s /photo



p) I as fI = FI(I) ∈ Rd, over a triplet loss [70] us-
ing the feature triplet of a query-sketch (fs) and a photo
(fp) belonging to the same category, and another photo
from a different category (fn). Minimising the triplet
loss (LTri) signifies bringing sketches and photos of the
same category closer while distancing other categories’
photos. With µ as margin and distance function d(a, b) =
(1− a · b)/(||a|| − ||b||), triplet loss is given as,

LTri = max{0, µ+ d(fs, fp)− d(fs, fn)} (2)

Unlike normal SBIR, evaluating on categories seen dur-
ing training CS = {cS

i }
NS
i=1, ZS-SBIR [16] evaluates on novel

ones CU = {cU
i }
NU
i=1, unseen during training, i.e, CS∩CU = ∅.

Naively Adapting CLIP for ZS-SBIR: Although the
SBIR baseline can be naively extended to a zero-shot set-
ting for ZS-SBIR [16], it performs unsatisfactorily lacking
sufficient zero-shot transfer [39,61] of semantic knowledge.
Consequently, a very naive extension upon CLIP would be
to replace ImageNet [48]-pretrained VGG-16 by the CLIP’s
visual encoder, which already holds semantic-rich informa-
tion, thus directly harnessing its inherent zero-shot poten-
tial for ZS-SBIR. Following traditional fine-tuning meth-
ods [44], if we start naively training the CLIP’s image en-
coder on SBIR dataset using triplet loss, the performance
collapses due to catastrophic forgetting [50] of learnt CLIP
knowledge. Alternatively, focusing on parameter-efficient
paradigm, one may train via an additional MLP layer at the
end [22], while keeping the remaining network frozen. As
this essentially transfers the encoded feature from CLIP’s
embedding space to a subsequent space via the MLP layer,
it does not guarantee CLIP’s generalisation potential to re-
main preserved [29], thus defeating our sole purpose of
adapting CLIP for ZS-SBIR. Avoiding such loopholes, we
therefore opt for a prompt learning approach [75] that not
only provides stable optimisation [31] but also preserves the
desired generalisation (open-vocab) [76] of CLIP.

Prompt Learning for ZS-SBIR: To adapt CLIP for
category-level SBIR, we learn two sets of sketch/photo vi-
sual prompts as vs,vp ∈ RK×dp , each of which is injected
into respective sketch Fs and photo Fp encoders both ini-
tialised from CLIP’s image encoder, respectively. Finally,
we get the prompt1 guided sketch feature fs = Fs(s,vs) ∈
Rd and photo feature fp = Fp(p,vp) ∈ Rd, respectively.
In essence, the sketch and photo specific prompts induce
CLIP [46] to learn the downstream sketch and photo dis-
tribution respectively. Knowledge learned by CLIP is dis-
tilled into a prompt’s weights via backpropagation keeping
CLIP visual encoder’s weights (θ) frozen. While freezing
θ is motivated by training stability [75, 76], we take a step
further and ask, can we improve CLIP by fine-tuning θ yet
enjoy training stability? Accordingly, instead of fine-tuning

1Please see §Prompt Learning in Sec. 3 and Supplementary for details.

θ entirely, we tune a small subset – the trainable parame-
ters of every layer normalisation (LN) layers across θ. Our
design is motivated by prior observation [21] on unusual
efficacy of training batch normalisation for image recogni-
tion, keeping rest of parameters frozen. Therefore, besides
the prompt parameters {vs,vp}, we update the parameters
of sketch/photo branch specific layer-norm layers’s param-
eters {lsθ, l

p
θ} via standard triplet loss as in Eq. (2). The

trainable parameter set is {vs,vp, lsθ, l
p
θ}.

Classification Loss using CLIP’s Text Encoder: Be-
sides using CLIP’s image encoder for zero-shot utility, we
further exploit the high generalisation ability provided by
natural language [15, 46] through CLIP’s text encoder. In
particular, along with the triplet loss, we impose a clas-
sification loss on the sketch/photo joint-embedding space.
For this, instead of usual auxiliary Ns-class FC-layer based
classification head [8, 16, 19], we take help of CLIP’s text
encoder to compute the classification objective, which is al-
ready enriched with semantic-visual association. Follow-
ing [24], we construct a set of handcrafted prompt tem-
plates like ‘a photo of a [category]’ to obtain a
list classification weight vectors {tj}Nsj=1 using CLIP’s text
encoder where the ‘[category]’ token is filled with a
specific class name from a list of Ns seen classes. The clas-
sification loss for I = {s, p} is given by:

LIcls =
1

N

N∑
i=1

− logP(yi|Ii) where,

P(yi|Ii) =
exp(sim(FI(Ii), ty)/τ)∑Ns
j=1 exp(sim(FIi(I), tj)/τ)

(3)

Summing up our CLIP adapted ZS-SBIR paradigm is
trained using a weighted (λ1) combination of losses as :
LZS-SBIR

Trn = LTri + λ1(Lpcls + Lscls).
While off-the-shelf CLIP itself has zero-shot image re-

trieval potential [30, 61] where someone can feed the cat-
egory level query as ‘a photo of a [query]’, it
raises a question – how much is a category-level query-
sketch beneficial over text-keyword based query? Attending
to sketch’s specialty in modelling fine-grained [6,51,70] de-
tails hence, we go beyond category-level ZS-SBIR [16, 18]
to a more practical and long-standing research problem of
cross-category fine-grained ZS-SBIR [44].

5. CLIP for Zero-Shot Fine-grained SBIR
Background on FG-SBIR: Compared to category-level
SBIR [50], fine-grained SBIR [70] aims at instance-level
sketch-photo matching at intra-category level. Most of ex-
isting FG-SBIR works remain restricted to single-category
setup, where they train and evaluate on the same category,
like the standard FG-SBIR dataset (e.g., QMUL-ShoeV2
[70]), that comprises k instance-level sketch/photo pairs
as {si, pi}ki=1. A baseline FG-SBIR framework [70] in-
volves training a backbone network, shared between sketch



and photo branches using a triplet-loss based objective [70]
where the matched sketch-photo pairs respectively form the
anchor (si) and positive (pi) samples, whereas a random
photo (p6=i) is considered as the negative.

A few works have extended it to multi-category FG-
SBIR [8] setup which aims to train a single model with
instance-level matching from multiple (Nc) categories (e.g.,
Sketchy dataset [53]). The dataset consists of sketch/photo
pairs from multiple categories {sji , p

j
i}
kj
i=1|

Nc
j=1 with every

jth class having kj sketch-photo pairs. On top of base-
line for single-category FG-SBIR [51], it involves two ad-
ditional design considerations (i) Hard-triplets for triplet
loss based training where the negative photo (pj6=i) is from
the same jth class of sketch-anchor (sji ) and positive-photo
(pji ), but of different instances (Lhard

Tri ), (ii) an auxiliary Nc-
class classification head on the sketch/photo joint embed-
ding space to learn the class discriminative knowledge.

Moving on, cross-category zero-shot FG-SBIR [42] is
analogous to category-level ZS-SBIR, in that the training
and testing categories are disjoint (CS∩CU = ∅), but the for-
mer needs to fetch instance-level photos from unseen cate-
gories instead of merely retrieving at category level like the
latter. We therefore aim to answer the question: how can
we extend our CLIP-based ZS-SBIR to FG-ZS-SBIR?

CLIP 
Text  

Encoder
a photo of a [category (    ) ]

ViT

Classification Loss

Hard Triplet
Loss

CLIP Image
Encoder

a

Patch Shuffling Loss

a

(a)

PromptImage patch

f-Divergence Loss

Photo ofSketch of Dot product

Figure 2. Cross-category FG-ZS-SBIR. A common (photo-sketch)
learnable visual prompt shared across categories is trained using
CLIP’s image encoder over three losses as shown. CLIP’s text-
encoder based classification loss is used during training.

Extending CLIP-based ZS-SBIR to FG-ZS-SBIR: To
recap (Fig. 2), the key components of CLIP-based ZS-SBIR
are: (i) CLIP image-encoder as backbone with separate
sketch/photo branches with individual prompts {vs,vp},
(ii) category-level triplets (iii) CLIP text-encoder [46] based
classification loss, and (iv) fine tuning layer-norms for
sketch/photo branches. Keeping rest of the design same,
the necessary modification for intra-category instance-level
matching (FG-ZS-SBIR) is to replace the category-level
triplets by hard-triplets – (sji , p

j
i , p

j
6=i) all from the same cat-

egory but different negative instances. Furthermore, we em-
pirically found that a common prompt [29] and a shared
backbone [70] between sketch/photo branches works better

for fine-grained matching. The only trainable parameter set
is thus a common prompt v and layer-norm parameters lθ.

However, there are two major bottlenecks: Firstly, due
to instance level matching across categories, the category-
specific margin-parameter of triplet loss (µ) varies signifi-
cantly [8], showing that a single global margin-value alone
is sub-optimal for training a FG-ZS-SBIR model. Secondly,
due to the diverse shape morphology [52] amongst varying
categories, it becomes extremely challenging to recognise
fine-grained associations for unseen classes whose shape is
unknown. We therefore need a training signal to explicitly
learn the structural correspondences in a sketch-photo pair.
Stabilising Margin (µ) across Categories: Recently
a work [8] on multi-category FG-SBIR has empirically
shown optimal margin (µ) value to vary across different cat-
egories. Looking closely at triplet loss, L = max(0, µ +
d(s, p+) − d(s, p−)) [71], it essentially computes the dif-
ference between positive ((s, p+)) and negative distances
((s, p−)). We term this difference as the relative distance
δ(s, p+, p−) = d(s, p+) − d(s, p−). Using a constant µ
means that on average, the relative distance is same for
any triplet (s, p+, p−) [60] in a category. Contrarily, a
varying µ across different categories signifies that the av-
erage relative distance across categories is not uniform [8].
Therefore, naively training with a single µ value across all
seen categories would be sub-optimal, and affect the cross-
category generalisation of triplet loss [44] which impor-
tantly works on this relative distance. While [8] tackles this
issue by meta-learning [27] the margin value using few-shot
sketch/photo pairs, ours is entirely a zero-shot setup [16],
rendering such adaptation infeasible. We thus impose a
regulariser that aims to make this relative distance uniform
across categories such that the same triplet loss, with sin-
gle (global) margin parameter µ works for all categories.
To achieve this, we first compute the distribution of relative
distances [23,38] for all triplets (s, p+, p−) in category c as
Dc = softmax{δ(si, p+i , p−)}

Ns
i=1, where cth category has

Ns sketch-photo pairs. Next, towards making the relative
distance uniform across categories, we minimise the KL-
divergence [40] between a distribution of relative distances
between every category-pair (aka. f-divergence [23]) as:

Lδ =
1

Ns(Ns − 1)

Ns∑
i=1

Ns∑
j=1

KL(Di,Dj) (4)

In practice, we compute Lδ using sketch/photo samples
from every category appearing in a batch. Importantly the
spread, or relative entropy [56] or information radius [57]
of distribution δ should be similar, thus stabilising training
with a single margin value for multi-category FG-ZS-SBIR.
Patch-shuffling for Zero-Shot Fine-grained Transfer:
Category-level SBIR is subtly different from FG-SBIR [70]
in that the former focuses only on semantic similarity be-
tween sketch-photo pairs, unlike FG-SBIR that takes a step
further to focus on fine-grained shape matching [8] between



a
Feature Extraction

= random permutation

Figure 3. Patch-shuffling for fine-grained transfer
.

sketches and photos. Highly diverse shape morphology [52]
across new categories implies unconstrained domain gap for
multi-category FG-SBIR, thus increasing its difficulty. Dis-
covering fine-grained correspondence becomes even harder
as shape itself becomes unknown for unseen categories [8].

For better fine-grained shape-matching transfer to novel
classes, we design a simple data-augmentation trick through
patch-shuffling to create augmented triplets [60]. In particu-
lar, we permute n×n patches (numbered) of sketch (s) and
photo (p) usingψ(·) as sγ =ψ(s, γ) and pγ =ψ(p, γ), where
γ denotes a random permutation of the array [1, 2, ...n2] de-
scribing the mapping of image patches to sγ or pγ (Fig. 3).
Given a sketch-photo pair of any category (s, p), training
should decrease feature-distance of the sketch-permutation
(sγ1 ) from the same permutation (γ1) of its paired photo
(pγ1 ), while increasing it from a different permutation (pγ2 ).
Accordingly, we devise a triplet [70] training objective as :

LPS = max{0, µps + d(fsγ1 , fpγ1 )− d(fsγ1 , fpγ2 )} (5)

In contrast to auxiliary patch-order prediction, we found
that our triplet objective between similar and dissimilar per-
muted instances provides better fine-grained shape transfer,
besides being much cheaper during trainsing compared to
complex Sinkorn operation [2] as used by Pang et al. [44].

With λ2,3,4 as hyperparameters, our overall training ob-
jective for CLIP adapted FG-ZS-SBIR paradigm is given as,
LFG-ZS-SBIR

Trn = Lhard
Tri + λ2(Lscls + L

p
cls) + λ3Lδ + λ4LPS.

6. Experiments
Datasets: We use three popular datasets for evaluation
on ZS-SBIR. (i) Sketchy (extended) [35] – Sketchy [53]
contains 75,471 sketches over 125 categories having 100
images each [69]. We use its extended version [35] hav-
ing extra 60,502 images from ImageNet [48]. Follow-
ing [69] we split it as 104 classes for training and 21 for
testing for zero-shot setup. (ii) TUBerlin [20] – contains
250 categories, with 80 free-hand sketches in each, ex-
tended to a total of 204,489 images by [72]. Following [16]
We split it as 30 classes for testing and 220 for training.
(iii) QuickDraw Extended [25]– The full-version houses
over 50 million sketches across 345 categories. Augment-
ing them with images, a subset with 110 categories hav-
ing 330,000 sketches and 204,000 photos was introduced
for ZS-SBIR [16], which we use, following their split of
80 classes for training and 30 for testing. Requiring fine-
grained sketch-photo association [60] for evaluating cross-

category FG-ZS-SBIR, we resort to Sketchy [53] with fine-
grained sketch-photo association, using the same zero-shot
categorical split of 104 training and 21 testing classes [69].
Implementation Details: We implemented our method
in PyTorch on a 11GB Nvidia RTX 2080-Ti GPU. For
sketch/photo encoder, we use CLIP [46] with ViT backbone
using ViT-B/32 weights. For both paradigms of ZS-SBIR
and FG-ZS-SBIR the input image size is set as 224 × 224
with margin parameter µ=0.3, and prompts are trained using
Adam optimiser with learning rate 1e−5 for 60 epochs, and
batch size 64, while keeping CLIP model fixed except its
LayerNorm layers. We use two prompts (sketch and photo)
from ZS-SBIR and one common prompt for FG-ZS-SBIR,
each having a dimension of (3 × 768). Our prompts are
injected in the first layer of transformer. For FG-ZS-SBIR
n=2 patches are used for patch shuffling-objective. Values
of λ1,2,3,4 are set to 0.5, 0.5, 0.1 and 1, empirically.
Evaluation Metric: Following recent ZS-SBIR litera-
ture [16, 28, 66] we perform ZS-SBIR evaluation consid-
ering the top 200 retrieved samples, reporting mAP score
(mAP@all) and precision (P@200) for ZS-SBIR. Keeping
consistency with recent ZS-SBIR works however, we report
P@100 and map@200 specifically for TUBerlin [72] and
Sketchy-ext [35] respectively. For cross-category FG-ZS-
SBIR, accuracy is measured taking only a single category
at a time [44], as Acc.@q [70] for Sketchy [53], which re-
flects percentage of sketches having true matched photo in
the top-q list. We use Top-1 and Top-5 lists [8].

6.1. Competitors
First we compare against State-of-the-arts for ZS-SBIR

and FG-ZS-SBIR. For ZS-SBIR (ZS-SOTA), while ZS-
CVAE [69] and ZS-CAAE [69] employs sketch-to-image
translation, ZS-CCGAN [18] and ZS-GRL [16] both use
word2vec [41] embeddings for semantic transfer, with ad-
versarial learning and gradient-reversal layer respectively.
Apart from using knowledge-distillation (KD) (ZS-SAKE)
[37], or learning a correlation matrix via prototype-based
selective KD (ZS-PSKD [37]), complex designs like graph
convolution network (ZS-GCN), coupled sketch/photo en-
coder (ZS-TCN [65]) with shared conv layers but indepen-
dent batchnorm layer, or complicated three-way ViT [17]
architecture (ZS-TVT [62]) for visual/semantic transfer have
been used. While ZS-IIAE [28] enforces cross-domain
disentanglement, ZS-Sketch3T [50] uses a test-time train-
ing paradigm to minimise the train-test distribution gap.
For FG-ZS-SBIR, we compare against CrossGrad [55] that
leverages hard triplets with a category/domain classifier us-
ing word2vec embedded class-labels, and CC-DG [42] that
models a universal manifold of prototypical visual sketch
traits towards generalising to unseen categories. We report
their results directly from their papers.

Next we design a few baselines (B) for adapting CLIP
to ZS-SBIR and ZS-FG-SBIR paradigms. For all of them,



Table 1. Quantitave comparison of our method against existing frameworks and baselines on ZS-SBIR and cross-category FG-ZS-SBIR.
Zero-Shot SBIR Cross-category Zero-Shot FG-SBIR

Methods Sketchy TU-Berlin QuickDraw Methods Sketchy
mAP@200 P@200 mAP@all P@100 mAP@all P@200 Top-1 Top-5

Z
S-

SO
TA

ECCV ’18 ZS-CAAE [69] 0.156 0.260 0.005 0.003 – –
ECCV ’18 ZS-CVAE [69] 0.225 0.333 0.005 0.001 0.003 0.003 Cross-GRAD [55] 13.4 34.90
CVPR ’19 ZS-CCGAN [18] – – 0.297 0.426 – –
CVPR ’19 ZS-GRL [16] 0.369 0.370 0.110 0.121 0.075 0.068 CC-DG [42] 22.6 49.00
ICCV’19 ZS-SAKE [37] 0.497 0.598 0.475 0.599 – –

AAAI ’20 ZS-GCN [74] 0.568 0.487 0.110 0.121 – – B-FG-FT 1.23 4.56
NeurIPS ’20 ZS-IIAE [28] 0.373 0.485 0.412 0.503 – –
TPAMI ’21 ZS-TCN [65] 0.516 0.608 0.495 0.616 0.140 0.298 B-FG-Lin 15.75 39.63

AAAI ’22 ZS-TVT [62] 0.531 0.618 0.484 0.662 0.149 0.293
ACM MM ’22 ZS-PSKD[ViT] [66] 0.560 0.645 0.502 0.662 0.150 0.298 B-FG-Cond 25.98 54.38

CVPR ’22 ZS-Sketch3T [50] 0.579 0.648 0.507 0.671 – –

B
-C

L
IP

B-FT 0.102 0.166 0.003 0.001 0.001 0.001 B-FG-IP 26.69 56.08
B-Lin 0.422 0.512 0.398 0.557 0.082 0.098
B-Cond 0.618 0.675 0.562 0.648 0.159 0.312 B-FG-MM 27.16 59.46
B-IP 0.691 0.711 0.628 0.702 0.182 0.361
B-MM 0.685 0.691 0.604 0.678 0.171 0.347 B-FG-Deep 27.62 61.56
B-Deep 0.702 0.718 0.637 0.718 0.188 0.375
Ours 0.723 0.725 0.651 0.732 0.202 0.388 Ours 28.68 62.34

the prompt design remains same for both paradigms, but ev-
ery baseline of ZS-SBIR (B-) is extended to FG-ZS-SBIR
(B-FG-) across multiple categories using hard-triplets and
a CLIP text-encoder based classification loss. B-FT and B-
FG-FT fine-tune a pre-trained ViT-B/16 CLIP-Image En-
coder [46], for ZS-SBIR with a low learning rate of 1e-
6. Similarly, B-Lin and B-FG-Lin use a linear probe [46]
to train an additional feature embedding layer on top of
pre-trained CLIP features to adapt to ZS-SBIR and FG-
ZS-SBIR respectively, keeping image-extractor backbone
frozen. Following [75], B-Cond and B-FG-Cond, learns to
generate a sketch-conditioned (for every sketch) prompt via
a lightweight network (ResNet-18), when after concatena-
tion with image-patch features are fed to the CLIP’s image
encoder. B-IP and B-FG-IP learn two independent shal-
low prompts, for sketch and photo, that are injected in the
first ViT [17] layer following [76] for ZS-SBIR and FG-ZS-
SBIR respectively. Instead of independent sketch and photo
prompts B-MM and B-FG-MM adapts [30] to learn a multi-
modal prompt for both sketch and photo to ensure mutual
synergy and discourage learning independent uni-modal so-
lutions. More specifically, we learn a single photo prompt
from which the sketch prompt is obtained as a photo-to-
sketch projection, via a linear layer. B-Deep and B-FG-
Deep employ deep prompting [29] learning N = 9 prompts
for sketch and photo, injected into the first N layers of
ViT [17] backbone. The last three types for both paradigms
importantly differ from our method in keeping their Layer-
Norm frozen, which we fine-tune for better accuracy.

6.2. Performance Analysis:
ZS-SBIR: While state-of-the-arts offer reasonable per-
formance (Table 1) thanks to their respective strategies of
semantic transfer via word2vec (ZS-GRL), adaptation via
test-time training (ZS-Sketch3T) or improvised transformer-
based (ZS-TVT), distillation-based (ZS-PSKD) and other se-
tups, our method armed with open-vocab generalisable po-
tential of CLIP, surpasses them in all three datasets. Al-
though naively adapting large foundation models like CLIP

[46] (e.g., B-FT) understandably collapses, a successful
adaptation outperforms existing SOTAs by ≈ 24.8% (avg).
This motivates CLIP [47] as the default sketch/photo en-
coders for future sketch research. While linear probing in
B-Lin secures higher results than SOTAs, it is surpassed by
prompt-based learning, thus providing insights on a better
adaptation choice. The marginal difference in performance
between a simple adaptation of CLIP in B-IP and more its
complicated versions in B-Deep [29], B-MM, B-Cond, mo-
tivates the use of a simple shallow prompt without the added
“bells and whistles” for ZS-SBIR. Finally, high accuracy on
ZS-SBIR, establishes CLIP as a robust choice for sketch-
based systems and thus motivates consequent focus on the
more challenging task of cross-category FG-ZS-SBIR.
Cross-category FG-ZS-SBIR: Our CLIP adapted
paradigm easily surpasses the two existing SOTAs on cross-
category FG-ZS-SBIR (Table 1 right). While CLIP models
[47] shows impressive performance at category-level ZS-
SBIR, there is reasonable scope for improvement in FG-ZS-
SBIR that additionally requires structural matching [44].
Relatively higher improvement of B-FG-MM over B-FG-
IP [76] than its category-level counterpart (B-MM over B-
IP), suggests the efficacy of multi-modal prompts over inde-
pendent sketch/photo prompts, in FG-SBIR. This supports
the prior observation [70] that sharing encoder parameters is
more suited to FG-SBIR [51] whereas separate sketch/photo
weights work best at category-level. Lastly, learning a con-
ditional prompt [75] in B-FG-Cond offers marginal gain
due to its sensitivity to training strategies [30, 75].
Extent of Generalisation: A strong motivation for us-
ing CLIP is its out-of-distribution performance [47] that
promises to enable large-scale real-world deployment of
sketch applications. Scrutinising this generalisation poten-
tial further, we experiment in two paradigms: (i) we vary
training data per-class as 10%, 30%, 50%, 70% and 100%,
and (ii) we vary number of seen classes as 20, 40, 60, 80 and
104 from Sketchy [53] respectively. Fig. 4 shows our ZS-
SBIR and FG-ZS-SBIR performance to remain relatively



Figure 4. Plots showing extent of generalisation by varying training data-size (left two) and number of seen categories (right two).

stable at variable training-data-size (left) as well as across
variable number of seen (training) categories (right), com-
pared to prior arts and baselines, justifying the zero-shot po-
tential of CLIP for both ZS-SBIR and FG-ZS-SBIR tasks.

6.3. Ablation Study
Justifying design components: We evaluate our models,
dropping one component at a time (Table 2) for both ZS-
SBIR and FG-ZS-SBIR. While not fine-tuning LayerNorm
(w/o LayerNorm) lowers performance on both paradigms
slightly, removing LIcls (w/o f-Divergene) severely af-
fects FG-ZS-SBIR as it loses it class-discrimination abil-
ity. Removing LPS (w/o Patch-Shuffling) and Lδ (w/o f-
Divergence) lowers FG-ZS-SBIR accuracy by 3.15% and
3.75%, owing to loss of sketch-photo structural corre-
spondence and non-uniform relative sketch-photo distances
across categories, thus verifying contribution of every de-
sign choice. Furthermore, using 2 × 2 patches instead of
3 × 3 for FG-ZS-SBIR provides a 1.2% gain in Acc.@1
(Sketchy), thus being optimal, as larger grid means more
white patches for sketch, leading to confused embeddings.

Table 2. Ablation Study on Sketchy

Methods ZS-SBIR FG-ZS-SBIR

mAP@all P@200 Top-1 Top-5

w/o LayerNorm 0.698 0.701 27.18 59.55
w/o Classification (LI

cls) 0.703 0.710 10.69 16.32
w/o Patch-Shuffling (LPS) – – 25.18 53.07
w/o f-Divergence (Lδ) – – 24.93 53.72

Ours 0.723 0.725 28.68 62.34

CLIP text encoder v/s Word2vec: Unlike earlier works
[16] that obtained semantics of a category via reconstruc-
tion from word2vec [41] embeddings for that category, our
method replaces it with feature embedding from CLIP’s
text encoder [46]. Word2vec [41] is trained using text-
only data, whereas CLIP’s text encoder trains on large-
scale (400M ) image-text pairs. Using word2vec embed-
dings in our proposed method instead, drops performance
by 4.57%/0.172 (Acc@1/mAP@200) for ZS-SBIR/FG-
ZS-SBIR on Sketchy [53], justifying our choice of CLIP’s
text encoder, capturing visual-semantic association (text-
photo pairs) instead of text-only information (word2vec).
Should we learn text prompts?: While handcrafted
prompt templates like ‘a photo of a [category]’
works well for class-discrimination training (Eqn. 4), we

wish to explore if there is any need to learn text prompts
like our visual prompts. Consequently, following [75] we
take N learnable prompts, matching the word embeddings
of handcrafted prompt dimensionally for the ith class as:
ηt = {η1, η2, · · · , ηN , ci} with word embedding ci denot-
ing the class name [75]. Training accordingly, drops perfor-
mance by 2.36%/0.078 (Acc.@1/mAP@200) in Sketchy
for ZS-SBIR/ZS-SBIR. This is probably because unlike
learned prompts, handcrafted prompts being rooted in natu-
ral language vocabulary are inclined to have a higher gener-
alisation ability in our case than learned text-prompts [41].
Varying number of Prompts: To ensure that our visual
prompt (RK×dp ) has sufficient information capacity [64],
we experiment with K = {1, 2, 3, 4}. Accuracy improves
from 26.15%/0.675 at K = 1 to 28.68%/0.723 at K = 3,
but saturates to 28.26%/0.718 (Acc@1/mAP@200) at K =
4 on Sketchy, proving optimal K as 3. We conjecture that a
high capacity prompt might lead to over-fitting [76] of CLIP
thus resulting in a lower zero-shot performance.
Comparing text-based image retrieval: To explore
how sketch fares against keywords as a query in a zero-
shot retrieval paradigm, we compare keyword-based re-
trieval against ZS-SBIR on Sketchy(ext), and against FG-
ZS-SBIR on Song et al.’s [59] dataset having fine-grained
sketch-photo-text triplets for fine-grained retrieval. While
keyword based retrieval employed via off-the-shelf CLIP,
remains competitive (0.523/0.612 mAP/P@200) against
our ZS-SBIR framework (0.723/0.725), it lags behind sub-
stantially (4.6% Acc@1) from our ZS-FG-SBIR method
(18.68% Acc@1), proving the well-accepted superiority of
sketch in modelling fine-grained details over text [70].

7. Conclusion
In this work we leverage CLIP’s open-vocab general-

isation potential via an intuitive prompt-based design to
enhance zero-shot performance of SBIR – both category-
level and fine-grained, where our method surpasses all
prior state-of-the-arts significantly. Towards improving
fine-grained ZS-SBIR, we put forth two novel strategies of
making relative sketch-photo feature distances across cate-
gories uniform and learning structural sketch-photo corre-
spondences via a patch-shuffling technique. Last but not
least, we hope to have informed the sketch community on
the potential of synergizing foundation models like CLIP
and sketch-related tasks going forward.
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A. Prompt Design for ZS-SBIR and ZS-FG-SBIR
Here we show in detail the way visual prompts are incorporated into the Image Encoder of CLIP [46].
For ZS-SBIR, we have two separate CLIP-image-encoders for photo and sketch branch with sketch and photo prompts

incorporated into the respective encoders. During training the entire CLIP model is kept frozen except the LayerNorm of
transformer layers and the prompts themselves, as shown in Fig. 5.
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Figure 5. Prompt Design for ZS-SBIR along with training objectives.

For FG-ZS-SBIR, we use one CLIP-image-encoder with one common prompt shared for both photo and sketch branches
incorporated into the CLIP-image encoder. Similar to ZS-SBIR design, during training the entire CLIP model is kept frozen
except the LayerNorm of transformer layers and the prompt itself, as shown in Fig. 6. Apart from shared image-encoders
the main difference from ZS-SBIR is in considering hard-triplets within each category instead of category-level triplets as in
ZS-SBIR. Furthermore, we have two more additional losses apart from the ones used for ZS-SBIR, aimed at (i) making the
relative sketch-photo distances across categories uniform via f-divergence, and (ii) learning the structural correspondences
between a sketch-photo pair via Patch-shuffling loss.

B. Datasets
For evaluation on ZS-SBIR we have used three datasets:
(i) Sketchy (extended) [35] – Sketchy [53] contains 75,471 sketches over 125 categories having 100 images per category,

with atleast 5 associated hand-drawn sketches per photo [69]. It was extended [35] further with extra 60,502 images from
ImageNet [48] (Sketchy-ext), which we use here. Following [69] for zero-shot setup we split it as 104 classes for training
and 21 for testing, ensuring that test-set images do not overlap with 1000 classes of ImageNet [48].

(ii) TUBerlin [20] – contains 250 categories, with 80 free-hand sketches in each, which was extended with a total of
204,489 images by [72]. We split it following [16] as 30 classes for testing and 220 for training.



CLS Transform
er Encoder Layer

Transform
er Encoder Layer

Transform
er Encoder Layer

Head

Backbone

Input

Em
bed

Input Photo patches

Transform
er Encoder Layer

Transform
er Encoder Layer

Transform
er Encoder Layer Head

Backbone

Input

Em
bed

CLS
LayerN

orm

M
ulti-H

ead
Attention

LayerN
orm

M
LP

Input

CLIP Text Encoder

a photo of a [category (    ) ]

H
ard Triplet Loss (Eqn. 2)

Transformer Encoder Layer

Frozen Trained

Dot product

FC
layer

FC
layer

 Classification Loss 
Eqn. 3

 Classification Loss 
Eqn. 3

Shared Shared SharedShared
Shared prompt

Input Sketch patches

Patch Shuffling Loss (Eqn. 5)

f-D
ivergence Loss (Eqn. 4)

Shared

Figure 6. Prompt Design for FG-ZS-SBIR along with training objectives.

(iii) QuickDraw Extended – The full-version contains over 50 million sketches across 345 categories, drawn by users
across the internet under 20 seconds per sketch. Augmenting the sketches with images from Flickr, a subset of QuickDraw
with 110 categories having 330,000 sketches and 204,000 photos was introduced for ZS-SBIR in [16]. We follow their split
of 80 classes for training and 30 for testing to ensure no overlap of test-set photos from ImageNet [48].

For evaluation on FG-ZS-SBIR we require fine-grained (one-to-one matching) sketch-photo association [70] across cat-
egories for evaluation. Accordingly we resort to Sketchy [53] which has atleast atleast 5 associated hand-drawn sketches
associated to every photo [69]. We use the same zero-shot categorical split of 104 training and 21 testing classes [69]. A few
examples of sketch-photo association with multiple sketches per photo is illustrated in Fig. 7.
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Figure 7. Some examples of Fine-grained associations across categories from Sketchy [53].

C. More on f-Divergence
To use a single (global) margin parameter µ that works for all categories, we impose a regulariser that aims to make

the sketch-photo relative distance, defined as δ(s, p+, p−), uniform across categories. We achieve this by computing the
distribution of relative distances for all triplets (s, p+, p−) in category c as Dc = {δ(si, p+i , p

−
i )}

Ns
i=1, where the cth category

has Ns sketch-photo pairs. Next, towards making the relative distance uniform across all categories, we minimise the KL-
divergence [34] between a distribution of relative distances.

However, KL-divergence [34] only computes the information distance between two distributions – the length of the short-
est program to describe a second distribution given the first. Comparing multiple (≥ 2) distributions however is comparatively
less studied. The multi-distribution generalisation of information distance, aka., the f -divergence is defined by a convex func-
tion f : [0,∞) → R. Despite its generalisation capability, f -divergence for multiple distribution setup is under-explored in
computer vision applications. In this paper, we thus adopt a rather simplistic definition of f -divergence by Sgarro [54] – the
average divergence, which is defined as,



1

Ns(Ns − 1)

Ns∑
i=1

Ns∑
j=1

KL(Di,Dj) (6)

D. Some Qualitative Results on Sketchy
Figures show qualitative results on Sketchy (ext) [35] for ZS-SBIR (Fig. 8) and on Sketchy [53] for FG-ZS-SBIR (Fig. 9),

of baseline methods vs. ours. Baselines are constructed following [16] and [70] for ZS-SBIR and FG-ZS-SBIR respectively.
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Figure 8. Qualitative results of ZS-SBIR on Sketchy [35] by a baseline (blue) method vs Ours (green).
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Figure 9. Qualitative results of FG-ZS-SBIR on Sketchy [53] by a baseline (blue) method vs Ours (green). The images are arranged in
increasing order of the ranks beside their corresponding sketch-query, i.e the left-most image was retrieved at rank-1 for every category.
The true-match for every query, if appearing in top-5 is marked in a green frame. Numbers denote the rank at which that true-match is
retrieved for every corresponding sketch-query.

E. Limitations
We observed two plausible limitations of our method which we keep for addressal in a future work. (i) The assumption

that CLIP covers almost all classes during training, might fail in certain niche cases. (ii) Being trained on internet-scale
data (400M image-text pairs), thorough zero-shot evaluation on an unseen class is challenging. However both limitations are
universal to all CLIP-based applications.
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